В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
artem759342
artem759342
20.06.2021 19:10 •  Математика

Площадь ABCD 924. Изготовьте из развертки куб и дайте название полученному кубу
(рис. 110).
1
С
2
3
4
3
Рис. 110

надеюсь
правелна далжнобыть​


Площадь ABCD 924. Изготовьте из развертки куб и дайте название полученному кубу(рис. 110).1С2343Рис.

Показать ответ
Ответ:
Sophie228
Sophie228
13.10.2020 20:32
Социально-правовая активность личности представляет собой наиболее высокий уровень правомерного поведения, проявляющийся в общественно полезной, одобряемой государством и обществом деятельности в правовой сфере. Это прежде всего инициативное поведение, которое может стать и нередко становится существенным фактором изменений в самой правовой системе. Социально-правовая активность определяется развитым правосознанием, глубокой правовой убежденностью, сознательно принятой на себя готовностью использовать предоставленные правом возможности, твормески руководствоваться ими в своем повседневном поведении.Такое поведение включает в себя следующие обобщающие компоненты:а) активность в деятельности добровольных формирований (партий, массовых движений, союзов и организаций, добровольных обществ, фондов, ассоциаций и других общественных объединений), возникших на основе общности интересов социальных групп, идейного и группового выбора личности. Эта активность ставит целью воздействовать на поддержку, функционирование или изменение государственно-правовых структур, осуществление реформ, защиту гражданских, политических, социальных и культурных прав и свобод граждан, их участие в управлении государственными и общественными делами;б) активность в государственно организованных формах деятельности в сфере правотворчества и правореализации (участие в обсуждении и принятии законопроектов, иных общегосударственных и общественно значимых решений; участие в выборах представительных органов власти и контроле за деятельностью депутатов всех уровней; участие в реализации правовых установлений и охране правопорядка);зоо
в) активность в создании и деятельности альтернативных или параллельных общественных и общественно-государственных структур (комитеты или советы общественного самоуправления по месту жительства; экспертные общественные советы, временные проблемные комиссии, региональные и местные фонды – по градостроительству, окружающей среде, охране памятников и др.; группы само и обеспечения порядка, правозащитные ассоциации, группы "общественного давления" и т.п.);г) самодеятельную активность личности в сфере права (голосование определенным образом во время выборов и референдумов; инициативные предложения по политико-правовым вопросам, направляемые в государственные органы и средства массовой информации; самостоятельное противодействие нарушениям законности и общественной морали
0,0(0 оценок)
Ответ:
Наташа123454321
Наташа123454321
08.02.2020 12:15
Дано: y = \frac{2x^2+1}{x^2} ;
Исследовать функцию и построить график.

Решение:

1) Функция не определена при обращении в ноль знаменателя, т.е. x ≠ 0 .

D(f) ≡ R \ {0} ≡ ( -\infty ; 0 )U( 0 ; +\infty ) ;

2) В функции встречаются только чётные степени аргумента, а значит она чётная. Докажем это:

y(-x) = \frac{ 2(-x)^2 + 1 }{ (-x)^2 } = \frac{2x^2+1}{x^2} = y(x) ;

Найдём первую производную функции y(x) :

y'(x) = ( \frac{2x^2+1}{x^2} )' = ( \frac{ 2x^2 }{x^2} + \frac{1}{x^2} )' = ( 2 + x^{-2} )' = -2 x^{-3} ;

y'(x) = -\frac{2}{x^3} ;

При x = 0, производная y'(x) – не определена, как и сама функция, при всех остальных значениях аргумента функция и её первая производная определены и конечны, а значит функция непрерывная на всей области определения D(f) – на всей числовой прямой, кроме ноля.

3) Функция не определена при x = 0 . Это точка разрыва. При этом её значение стремится к положительной бесконечности, что легко доказать:

\lim_{x \to 0} y(x) = \lim_{x \to 0} \frac{2x^2+1}{x^2} = \lim_{x \to 0} 2 + \lim_{x \to 0} \frac{1}{x^2} = 2 + \infty = +\infty ;

Если приравнять функцию к нолю, получим:

y(x) = 0 ;

\frac{2x^2+1}{x^2} = 0 ;

2 + \frac{1}{x^2} = 0 ;

( \frac{1}{x} )^2 = -2 – что невозможно ни при каких действительных значениях аргумента;

Значит, никаких пересечений графика с осями координат нет.

4. Найдем асимптоты y(x).

По найденному в (3) пределу, ясно, что линия x = 0 – является вертикальной двухсторонней асимптотой графика функции y(x) .

Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± \infty :

\lim_{x \to \infty} y(x) = \lim_{x \to \infty} \frac{2x^2+1}{x^2} = \lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^2} = 2 + 0 = 2 ;

Значит, уходя на бесконечность обоих знаков график функции y(x) имеет двунаправленную горизонтальную асимптоту y = 2 ;

Наклонных асимптот нет, и не может быть, так как есть горизонтальные с обеих сторон.

5. Первая производная функции y(x) :

y'(x) = -\frac{2}{x^3} – положительна при отрицательных значениях аргумента и отрицательна при положительных х ;

Значит, функция возрастает на ( -\infty ; 0 ) и убывает на ( 0 ; +\infty ) ;

Уравнение y'(x) = 0 т.е. y'(x) = -\frac{2}{x^3} – не имеет решений, а значит, у функции нет экстремумов, т.е. конечных локальных минимумов или максимумов.

6. Найдём вторую производную функции y(x) :

y''(x) = (y'(x))' = ( -\frac{2}{x^3} )' = -2 ( x^{-3} )' = -2*(-3)*x^{-4} ;

y''(x) = \frac{6}{x^4} 0 при любых значениях аргумента ;

В силу общей положительности второй производной – график функции всегда «улыбается», т.е. он вогнут, или, говоря иначе: он закручивается против часовой стрелки на всём своём протяжении при проходе по числовой оси аргументов слева направо.

Поскольку выгнутость повсеместна, то и точек перегиба не может быть. И их нет, соответственно.

7.

При х = ± 1 : : : y(x) = 3 ;

При х = ± 2 : : : y(x) = 2.25 ;

При х = ± 1/2 : : : y(x) = 6 ;

Строим график:

Построить график построить график функции y = (2x^2+1)/x^2 по следующему алгоритму: 1) область опред
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота