В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
valentina05ru
valentina05ru
02.11.2022 11:13 •  Математика

первая снегоуборочная машина убрала 3/8 всего снега на улице и ещё 5 тонн,вторая снегоуборочная машина убрала 1/4 всего снега и ещё 7 тонн. найдите сколько всего снега убрала две снегоуборочные машины.

Показать ответ
Ответ:
lemenchuk2001
lemenchuk2001
02.02.2023 00:35

Решение простейших тригонометрических уравнений

Пример 1. Найдите корни уравнения

\[ \cos\left(4x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}, \]

принадлежащие промежутку [-\pi;\pi).

Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем k,\,n\in Z (на всякий случай, эта запись означает, что числа n и k принадлежат множеству целых чисел):

\[ 4x+\frac{\pi}{4}=\pm\operatorname{arccos \left(-\frac{\sqrt{2}}{2}\right)}+2\pi k. \]

Арккосинус a есть число, заключенное в интервале от 0 до \pi, косинус которого равен a.

Арксинус a есть число, заключенное в интервале от -\pi до \pi, косинус которого равен a.

Другими словами, нам нужно подобрать такое число из промежутка [0;2\pi], косинус которого был бы равен -\frac{\sqrt{2}}{2}. Это число \frac{3\pi}{4}. Используя это, получаем:

\[ 4x+\frac{\pi}{4} = \pm\frac{3\pi}{4}+2\pi k\Leftrightarrow \left[\begin{array}{l}x = \frac{\pi}{8}+\frac{\pi k}{2}, \\ x = -\frac{\pi}{4}+\frac{\pi n}{2}.\end{array}\right. \]

0,0(0 оценок)
Ответ:
HET228
HET228
14.12.2022 01:07
Пусть A - сумма, которую взяли в банке. q - разность остатков долга за июль текущего года и июль предыдущего. Смоделируем ситуацию:
Годом будем считать промежуток с начала ИЮНЯ текущего календарного года по конец ИЮЛЯ следующего календарного года. Таким образом, в начале 16-го года его долг составит 0 млн. рублей.
1й год:
июль - A,
январь - A(1+x/100)
2й год:
июль - (A-q), заплатил A(1+x/100) - (A-q) = A(x/100)+q
январь - (A-q)(1+x/100)
3й год:
июль - (A-2q), заплатил (A-q)(1+x/100) - (A-2q) = (A-q)(x/100)+q
январь - (A-2q)(1+x/100)
...
15й год:
июль - (A-14q), заплатил (A-13q)(1+x/100) - (A-14q) = (A-13q)(x/100)+q
январь - (A-14q)(1+x/100)
16й год:
июль - отдал последние гроши из своего бедного кармана, остаток долга - (A-15q) = 0, заплатил (A-14q)(1+x/100) - (A-15q) = (A-14q)(x/100)+q.
Очевидно, что с каждым годом ему платить приходилось все меньше и меньше.На втором году заплатил A(x/100)+q, а на 16-м: (A-14q)(x/100)+q.
Теперь смотрим на условия задачи.
1) A(x/100)+q <=1.9
2) (A-14q)(x/100)+q >= 0.5
3) A = 6
4) (A-15q) = 0, откуда q = A/15.
Объединим все, что есть:
a) q = 6/15=0.4
б) 6(x/100)+0.4 <= 1.9
x/100<=0.25
x<=25
в) (6-14*0.4)(x/100)+0.4 >= 0.5
0.4(x/100)>=0.1
x>=25.
Таким образом, получили уже упрощенную систему неравенств для x: x<=25 и x>=25, единственным решением которой является x=25.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота