Найдём сначала радиус описанной окружности около правильного шестиугольника: R = a/2sin(180°/n), где а - длина стороны, n - количество сторон. R = 6 см/2sin(180°/6) = 6 см/2sin30° = 6 см/2•1/2 = 6 см. Длина октвюности l вычисляется по формуле l = 2πR. l = 2π•6 см = 12π см (или ≈ 37,71 см). ответ: l = 12π см
Найдём сначала радиус описанной окружности около правильного шестиугольника: R = a/2sin(180°/n), где а - длина стороны, n - количество сторон. R = 6 см/2sin(180°/6) = 6 см/2sin30° = 6 см/2•1/2 = 6 см. Длина октвюности l вычисляется по формуле l = 2πR. l = 2π•6 см = 12π см (или ≈ 37,71 см). ответ: l = 12π см
Пошаговое объяснение:Если описанной, то
Периметр 6-угольника равен Р=6R. R=Р/6
72/6=12 см - длина радиуса описанной окружности.
12*2=24 см - диаметр описанной окружности.
Если вписанной, то:
Р=4*корень из 3*r
r=P/4*корень из 3=72/4*корень из 3=18/корень из 3
Диаметр=2*18/корень из 3=36/корень из 3