1 - объём всей работы 1/4 - часть бассейна, которая заполняется двумя трубами за 1 час 1/6 - часть бассейна, которая заполняется первой трубой за 1 час 1/4 - 1/6 = 3/12 - 2/12 = 1/12 - часть бассейна, которая заполняется второй трубой за 1 час 1 : 1/12 = 12 часов будет наполнять весь бассейн вторая труба
1 - объём всей работы 1/4 - часть бассейна, которая заполняется двумя трубами за 1 час 1/6 - часть бассейна, которая заполняется первой трубой за 1 час х часов будет наполнять весь бассейн вторая труба 1/х - часть бассейна, которая заполняется второй трубой за 1 час 1/6 + 1/х = 1/4 2х + 12 = 3х 3х - 2х = 12 х = 12 часов будет наполнять весь бассейн вторая труба
1/4 - часть бассейна, которая заполняется двумя трубами за 1 час
1/6 - часть бассейна, которая заполняется первой трубой за 1 час
1/4 - 1/6 = 3/12 - 2/12 = 1/12 - часть бассейна, которая заполняется второй трубой за 1 час
1 : 1/12 = 12 часов будет наполнять весь бассейн вторая труба
1 - объём всей работы
1/4 - часть бассейна, которая заполняется двумя трубами за 1 час
1/6 - часть бассейна, которая заполняется первой трубой за 1 час
х часов будет наполнять весь бассейн вторая труба
1/х - часть бассейна, которая заполняется второй трубой за 1 час
1/6 + 1/х = 1/4
2х + 12 = 3х
3х - 2х = 12
х = 12 часов будет наполнять весь бассейн вторая труба
Вычисляем определитель матрицы 3×3:
∆ =
5 3 3
2 6 -3
8 -3 2
= 5·6·2 + 3·(-3)·8 + 3·2·(-3) - 3·6·8 - 5·(-3)·(-3) - 3·2·2 = 60 - 72 - 18 - 144 - 45 - 12 = -231.
Находим определители:
∆1 =
48 3 3
18 6 -3
21 -3 2
= 48·6·2 + 3·(-3)·21 + 3·18·(-3) - 3·6·21 - 48·(-3)·(-3) - 3·18·2 = 576 - 189 - 162 -
- 378 - 432 - 108 = -693.
∆2 =
5 48 3
2 18 -3
8 21 2
= 5·18·2 + 48·(-3)·8 + 3·2·21 - 3·18·8 - 5·(-3)·21 - 48·2·2 = 180 - 1152 + 126 - 432 + 315 - 192 = -1155.
∆3 =
5 3 48
2 6 18
8 -3 21
= 5·6·21 + 3·18·8 + 48·2·(-3) - 48·6·8 - 5·18·(-3) - 3·2·21 = 630 + 432 - 288 - 2304 + 270 - 126 = -1386.
x = ∆1 / ∆ = -693 / -231 = 3.
y = ∆2 / ∆ = -1155 / -231 = 5.
z = ∆3 / ∆ = -1386 / -231 = 6.