1 - объём всей работы 1/4 - часть бассейна, которая заполняется двумя трубами за 1 час 1/6 - часть бассейна, которая заполняется первой трубой за 1 час 1/4 - 1/6 = 3/12 - 2/12 = 1/12 - часть бассейна, которая заполняется второй трубой за 1 час 1 : 1/12 = 12 часов будет наполнять весь бассейн вторая труба
1 - объём всей работы 1/4 - часть бассейна, которая заполняется двумя трубами за 1 час 1/6 - часть бассейна, которая заполняется первой трубой за 1 час х часов будет наполнять весь бассейн вторая труба 1/х - часть бассейна, которая заполняется второй трубой за 1 час 1/6 + 1/х = 1/4 2х + 12 = 3х 3х - 2х = 12 х = 12 часов будет наполнять весь бассейн вторая труба
1/4 - часть бассейна, которая заполняется двумя трубами за 1 час
1/6 - часть бассейна, которая заполняется первой трубой за 1 час
1/4 - 1/6 = 3/12 - 2/12 = 1/12 - часть бассейна, которая заполняется второй трубой за 1 час
1 : 1/12 = 12 часов будет наполнять весь бассейн вторая труба
1 - объём всей работы
1/4 - часть бассейна, которая заполняется двумя трубами за 1 час
1/6 - часть бассейна, которая заполняется первой трубой за 1 час
х часов будет наполнять весь бассейн вторая труба
1/х - часть бассейна, которая заполняется второй трубой за 1 час
1/6 + 1/х = 1/4
2х + 12 = 3х
3х - 2х = 12
х = 12 часов будет наполнять весь бассейн вторая труба
30/31
Пошаговое объяснение:
Пусть имеем треугольник АВС и вневписанные окружности ra = 3, rb = 5, rc = 4.
Впишем в треугольник окружность с радиусом r.
Точки касания этой окружности стороны АС и rа к её продолжению соответственно В1 и В2.
Находим радиус вписанной окружности в треугольник АВС по известным радиусам вневписанных окружностей.
.
(1/r) = (1/3) + (1/4) + (1/5) = 47/60.
Получаем радиус вписанной окружности r = 60/47.
Центры окружностей О и О1 лежат на биссектрисе угла А.
Используем свойства вписанной и вневписанной окружностей.
Квадрат полупериметра р треугольника АВС равен:
р² = ra*rb + rb*rc + rc*ra = 3*5 + 5*4 + 4*3 = 47.
Отсюда р = √47.
Тогда площадь S треугольника АВС равна: S = rp = 3√47 ≈ 8,75189949.
Применим свойства: отрезок АВ2 = р, отрезок АВ1 = р - а.
Из подобия треугольников выводим пропорцию: r/АВ1 = rа/АВ2. Подставим значения: r/(р - а) = rа/р, или rр = rа(р - а).
Раскроем скобки и выделим а: а = р - (рr/rа) = (р(rа - r)/rа.
По аналогичным формулам находим стороны b и с.
Подставив значения, получаем:
а = 3,93835477 b = 5,105274702 c =4,667679728 .
Делаем проверку правильности найденных значений.
По формуле Герона S = √(p(p - a)(p - b)(p - c)).
Подставив значения, находим S = 8,75190051 . что соответствует уже найденному значению.
Вторая проверка: по теореме косинусов угол А равен 47,26788996°.
С другой стороны А = 2arctg(ra/p) = 2arctg(3/√47) = 47,26788996 ° верно.