Дедушка отправился в нужное время, и если бы поезд пришел вовремя, то дедушка приехал бы как раз к поезду. Но поезд пришел на х мин раньше. Вася пешком 30 минут и встретил дедушку. И они вернулись на 20 мин раньше. Эти 20 мин дедушка должен был потратить на то, чтобы проехать от места встречи и обратно, то есть 10 мин в один конец. А Вася потратил 30 мин на то, чтобы дойти до места встречи. Значит, скорость Васи в 3 раза меньше скорости машины. Поезд прибыл раньше на x = 30 + 10 = 40 минут. 30 мин, которые шел Вася и 10 мин, за которые приехал бы дедушка.
Но поезд пришел на х мин раньше.
Вася пешком 30 минут и встретил дедушку.
И они вернулись на 20 мин раньше.
Эти 20 мин дедушка должен был потратить на то, чтобы проехать от места встречи и обратно, то есть 10 мин в один конец.
А Вася потратил 30 мин на то, чтобы дойти до места встречи.
Значит, скорость Васи в 3 раза меньше скорости машины.
Поезд прибыл раньше на x = 30 + 10 = 40 минут.
30 мин, которые шел Вася и 10 мин, за которые приехал бы дедушка.
ответ:
-21
пошаговое объяснение:
пусть x_0x
0
— абсцисса точки на графике функции y=-12x^2+bx-10,y=−12x
2
+bx−10, через которую проходит касательная к этому графику.
значение производной в точке x_0x
0
равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3.y
′
(x
0
)=−24x
0
+b=3. с другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2.−12x
0
2
+bx
0
−10=3x
0
+2. получаем систему уравнений \begin{cases} -24x_0+b=-12x_0^2+bx_0-10=3x_0+2. \end{cases}{
−24x
0
+b=3,
−12x
0
2
+bx
0
−10=3x
0
+2.
решая эту систему, получим x_0^2=1,x
0
2
=1, значит либо x_0=-1,x
0
=−1, либо x_0=1.x
0
=1. согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1,x
0
=−1, тогда b=3+24x_0=-21.b=3+24x
0
=−21.
ответ
-21