Давай рассмотрим на примере) Возьмём смешанную дробь. Сама смешанная дробь - это дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби. Например: Три целых пять седьмых. Натуральное число - число целых, следовательно, эта смешанная дробь больше трёх, т.к. у нас есть ещё пять седьмых. А следующее число после трёх - четыре. Но нам не хватает до четырёх ещё две седьмых. Значит, что смешанная дробь больше своей целой части, но меньше натурального числа, следующего за этой частью.
Если что-то не поняла, напиши) Постараюсь ещё чётче объяснить)
Возьмём смешанную дробь.
Сама смешанная дробь - это дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби.
Например: Три целых пять седьмых.
Натуральное число - число целых, следовательно, эта смешанная дробь больше трёх, т.к. у нас есть ещё пять седьмых.
А следующее число после трёх - четыре. Но нам не хватает до четырёх ещё две седьмых. Значит, что смешанная дробь больше своей целой части, но меньше натурального числа, следующего за этой частью.
Если что-то не поняла, напиши) Постараюсь ещё чётче объяснить)
a₁=-π/4+2nπ; a₂=arctg0,5+2nπ, n∈Z
Пошаговое объяснение:
f(x)=(cosa)x²+(2sina)x+0,5(cosa-sina)
Если cosa=0 тогда f(x)=±2x±0,5⇒ cosa≠0
g(x)=(bx+c)²=b²x²+2bcx+c²
f(x)≡g(x)⇒b²=cosa; 2bc=2sina; c²=0,5(cosa-sina); cosa>0
bc=sina
(bc)²=sin²a
b²·c²=0,5cosa·(cosa-sina)
sin²a=0,5cosa·(cosa-sina)
2sin²a=cosa·(cosa-sina)
2sin²a=cos²a-cosa·sina
2sin²a/cos²a=cos²a/cos²a-cosa·sina/cos²a
2tg²a=1-tga
tga=y
2y²=1-y
2y²+y-1=0
(y+1)(2y-1)=0
y₁=-1⇒tga=-1⇒a₁=-π/4+kπ, k∈Z
y₂=0,5⇒tga=0,5⇒a₂=arctg0,5+kπ, ∈Z
cosa>0⇒k=2n