Один оператор на комп'ютері за 1 год набирає 4 сторінки тексту, а інший - 20 сторінок за 4 год. за скільки годин спільної роботи вони наберуть 54 сторінки
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
где S {\displaystyle \ S} \ S — площадь основания и h {\displaystyle \ h} \ h — высота;
V = 1 6 V p , {\displaystyle V={\frac {1}{6}}V_{p},} V={\frac {1}{6}}V_{p},
где V p {\displaystyle \ V_{p}} \ V_{p} — объём параллелепипеда;
Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[7]:
V = 1 6 a 1 a 2 d sin φ , {\displaystyle V={\frac {1}{6}}a_{1}a_{2}d\sin \varphi ,} V={\frac {1}{6}}a_{1}a_{2}d\sin \varphi ,
где a 1 , a 2 {\displaystyle a_{1},a_{2}} a_{1},a_{2} — скрещивающиеся рёбра , d {\displaystyle d} d — расстояние между a 1 {\displaystyle a_{1}} a_{1} и a 2 {\displaystyle a_{2}} a_{2} , φ {\displaystyle \varphi } \varphi — угол между a 1 {\displaystyle a_{1}} a_{1} и a 2 {\displaystyle a_{2}} a_{2};
Боковая поверхность — это сумма площадей боковых граней:
S b = ∑ i S i {\displaystyle S_{b}=\sum _{i}^{}S_{i}} S_{b}=\sum _{i}^{}S_{i}
Полная поверхность — это сумма площади боковой поверхности и площади основания:
S p = S b + S o {\displaystyle \ S_{p}=S_{b}+S_{o}} \ S_{p}=S_{b}+S_{o}
Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
S b = 1 2 P a = n 2 b 2 sin α {\displaystyle S_{b}={\frac {1}{2}}Pa={\frac {n}{2}}b^{2}\sin \alpha } {\displaystyle S_{b}={\frac {1}{2}}Pa={\frac {n}{2}}b^{2}\sin \alpha }
где a {\displaystyle a} a — апофема , P {\displaystyle \ P} \ P — периметр основания, n {\displaystyle \ n} \ n — число сторон основания, b {\displaystyle \ b} \ b — боковое ребро, α {\displaystyle \alpha } \alpha — плоский угол при вершине пирамиды.
Пошаговое объяснение:
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
проч.
решай по формуле
Пошаговое объяснение:
V={\frac {1}{3}}Sh,
где S {\displaystyle \ S} \ S — площадь основания и h {\displaystyle \ h} \ h — высота;
V = 1 6 V p , {\displaystyle V={\frac {1}{6}}V_{p},} V={\frac {1}{6}}V_{p},
где V p {\displaystyle \ V_{p}} \ V_{p} — объём параллелепипеда;
Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[7]:
V = 1 6 a 1 a 2 d sin φ , {\displaystyle V={\frac {1}{6}}a_{1}a_{2}d\sin \varphi ,} V={\frac {1}{6}}a_{1}a_{2}d\sin \varphi ,
где a 1 , a 2 {\displaystyle a_{1},a_{2}} a_{1},a_{2} — скрещивающиеся рёбра , d {\displaystyle d} d — расстояние между a 1 {\displaystyle a_{1}} a_{1} и a 2 {\displaystyle a_{2}} a_{2} , φ {\displaystyle \varphi } \varphi — угол между a 1 {\displaystyle a_{1}} a_{1} и a 2 {\displaystyle a_{2}} a_{2};
Боковая поверхность — это сумма площадей боковых граней:
S b = ∑ i S i {\displaystyle S_{b}=\sum _{i}^{}S_{i}} S_{b}=\sum _{i}^{}S_{i}
Полная поверхность — это сумма площади боковой поверхности и площади основания:
S p = S b + S o {\displaystyle \ S_{p}=S_{b}+S_{o}} \ S_{p}=S_{b}+S_{o}
Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
S b = 1 2 P a = n 2 b 2 sin α {\displaystyle S_{b}={\frac {1}{2}}Pa={\frac {n}{2}}b^{2}\sin \alpha } {\displaystyle S_{b}={\frac {1}{2}}Pa={\frac {n}{2}}b^{2}\sin \alpha }
где a {\displaystyle a} a — апофема , P {\displaystyle \ P} \ P — периметр основания, n {\displaystyle \ n} \ n — число сторон основания, b {\displaystyle \ b} \ b — боковое ребро, α {\displaystyle \alpha } \alpha — плоский угол при вершине пирамиды.