Один конец отрезка находится в точке M с координатами (32;20), другой конец N имеет координаты (12;6). Определи координаты серединной точки K отрезка MN.
Графиком уравнения x=ky², будет парабола, вершина которой в точке (0;0), с осью симметрии y=0. То есть она симметрична относительно оси Ox.
Подставим координаты точки (-2;-2) в уравнение, так как парабола должна проходить через неё. Так мы определим коэффициент k.
-2 = k·(-2)²
4k = -2 |÷4
k = -2÷4 = -0,5
Итог: x = -0,5y²
Это уравнение, а не функция, то есть нам не обязательно представлять всё через одну переменную. Если домножить обе части равенства на (-2), то получим так же верную запись нужной параболы: y²=-2x.
ответ:ответ: y² = -2x.
Пошаговое объяснение:
Графиком уравнения x=ky², будет парабола, вершина которой в точке (0;0), с осью симметрии y=0. То есть она симметрична относительно оси Ox.
Подставим координаты точки (-2;-2) в уравнение, так как парабола должна проходить через неё. Так мы определим коэффициент k.
-2 = k·(-2)²
4k = -2 |÷4
k = -2÷4 = -0,5
Итог: x = -0,5y²
Это уравнение, а не функция, то есть нам не обязательно представлять всё через одну переменную. Если домножить обе части равенства на (-2), то получим так же верную запись нужной параболы: y²=-2x.
1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем 5 сантиметров. C
6
Можно сделать иначе: мы умеем откладывать
4 см и 1 см, так что можно отложить их подряд
и получить 5 cм. Ещё один так что достаточно отложить 3 раза по 11 см и потом 4 раза по 7 в другую сторону. (Преимущество
приведённого сначала в том, что он годится
для любого целого числа сантиметров.)