Чтобы разница была меньше часа, нужно, чтоб первое дыухзначное число разнилось на один. Мы можем взять только такое число, где ни одна цифра не повторяется, поэтому 09 и 10 нам не подойдут, как и другие, где совпадает первая цифра (например, 12 и 13), поэтому подойдет только 19 и 20. Чтобы максимально уменьшить разницу в минутах, надо, чтоб возле 19 стояло наибольшее возможное число, а возле 20--наименьшее возможное, причем оба меньше 60. т.к. 9 уже использовано, то 59 не подходит, поэтому берем 58. И т.к. использованы 0, 1, 2, то наименьшее возможное двухзначное число возле 20 будет 34. То, есть начало партии было в 19:58, а конец в 20: 34. Тааким образом 34+(60-2)=34+2=36 минут
В 235 году до н.э. греческий ученый Эратосфен изобрел следующий нахождения простых чисел на промежутке от 1 до заданного N:
1. Выписать все целые числа 2,...,N.
2. Зачеркнуть все числа, кратные i = 2 — первому простому числу.
3. Найти первое незачёркнутое число в списке, большее чем i, и присвоить значению переменной i это число.
4. Повторять шаги 2 и 3, пока это возможно.
После завершения алгоритма незачеркнутыми останутся все простые числа, меньшие либо равные N.
Напишите функцию eratosthenes(N), воспроизводящую данный алгоритм. Ваша функция должна через пробел печатать числа в том порядке, в котором их вычеркивает из списка оригинальный алгоритм. Например, если N = 10, то числа будут вычеркиваться в таком порядке: 4 6 8 10 9.
Если для какого-то параметра никакие числа не вычеркиваются, просто не выводите ничего.
ответ: 36 минут
Пошаговое объяснение:
Чтобы разница была меньше часа, нужно, чтоб первое дыухзначное число разнилось на один. Мы можем взять только такое число, где ни одна цифра не повторяется, поэтому 09 и 10 нам не подойдут, как и другие, где совпадает первая цифра (например, 12 и 13), поэтому подойдет только 19 и 20. Чтобы максимально уменьшить разницу в минутах, надо, чтоб возле 19 стояло наибольшее возможное число, а возле 20--наименьшее возможное, причем оба меньше 60. т.к. 9 уже использовано, то 59 не подходит, поэтому берем 58. И т.к. использованы 0, 1, 2, то наименьшее возможное двухзначное число возле 20 будет 34. То, есть начало партии было в 19:58, а конец в 20: 34. Тааким образом 34+(60-2)=34+2=36 минут
ну както так
Пошаговое объяснение:
В 235 году до н.э. греческий ученый Эратосфен изобрел следующий нахождения простых чисел на промежутке от 1 до заданного N:
1. Выписать все целые числа 2,...,N.
2. Зачеркнуть все числа, кратные i = 2 — первому простому числу.
3. Найти первое незачёркнутое число в списке, большее чем i, и присвоить значению переменной i это число.
4. Повторять шаги 2 и 3, пока это возможно.
После завершения алгоритма незачеркнутыми останутся все простые числа, меньшие либо равные N.
Напишите функцию eratosthenes(N), воспроизводящую данный алгоритм. Ваша функция должна через пробел печатать числа в том порядке, в котором их вычеркивает из списка оригинальный алгоритм. Например, если N = 10, то числа будут вычеркиваться в таком порядке: 4 6 8 10 9.
Если для какого-то параметра никакие числа не вычеркиваются, просто не выводите ничего.