ОЧЕНЬ НАДО Денис загадал четыре различных натуральных числа. Он утверждает, чтопроизведение наименьшего и наибольшего чисел равно 32;произведение двух оставшихся чисел равно 26.Чему равна сумма всех четырёх чисел?№ 2Вдоль дороги стоят дома Андрея, Бори, Васи и Гены (именно в таком порядке). Расстояние между домами Андрея и Гены равно 2470 метрам. Однажды ребята решили устроить забег на 1 км. Они поставили старт на полпути от дома Андрея до дома Васи. При этом финиш оказался ровно на полпути от дома Бори до дома Гены. Чему равно расстояние от дома Бори до дома Васи? ответ укажите в метрах.№ 3Числа 1, 3, 4, 6, 8, 11 расставили в клетки фигуры, изображённой на рисунке, так, чтобы суммы чисел во всех столбцах (включая столбец из одной клетки) были равны. Какое число может стоять в самой верхней клетке? Укажите все возможные варианты.№ 4В понедельник 4 человека из класса получили пятёрки по математике, во вторник пятёрки получили 10 человек, в среду — 5 человек, в четверг — 3 человека, в пятницу — 11 человек. Никто из учеников не получал пятёрки два дня подряд. Какое наименьшее количество учеников могло учиться в классе?№ 5На собрании совета племени по очереди выступали 80 человек. Каждый из них сказал только одну фразу. Первые трое выступавших сказали одно и то же: «Я всегда говорю правду». Следующие 77 выступавших тоже сказали одинаковые фразы: «Среди предыдущих трёх выступавших правду сказали ровно два человека». Какое наибольшее количество выступавших могло сказать правду?№ 6Точки D и E отмечены на сторонах AC и BC соответственно. Известно, что AB=BD, ∠ABD=52∘, ∠DEC=90∘. Найдите ∠BDE, если известно, что 2DE=AD.№ 7В кабинете есть несколько одиночных парт (за каждой партой может сидеть не более одного человека; других парт в кабинете нет). Во время перемены четверть учащихся вышли в коридор, а в кабинете осталось количество людей, равное 5/8 от общего числа парт. Сколько парт в аудитории, если их не более 30?№ 8Таня и Вера играют в игру. У Тани есть карточки с числами от 1 до 30. Она расставляет их в некотором порядке по кругу. Для каждых двух соседних чисел Вера считает их разность, вычитая из большего числа меньшее, и выписывает получившиеся 30 чисел себе в блокнот. После этого Вера отдает Тане количество конфет, равное наименьшему числу из выписанных в блокнот. Таня выкладывает карточки так, чтобы получить как можно больше конфет. Какое наибольшее количество конфет она может получить?
1. Длина окружности L(окр) = 2*pi*R(окр) , длина сектора L(сект) = R(окр) *alpha.
Т. о. , периметр воронки L(вор) = L(окр) - L(сект)
2. R(воронки) = L(вор) /(2*pi)
высота воронки H(вор) = sqrt( R(окр) ^2 - R(воронки) ^2);
3. Имея функции R(вор) от alpha и H(вор) от alpha, имеем функцию для объема
V(вор) = pi*R(вор) ^2*H(вор) /3
Это функция от параметра alpha, берем производную, приравниваем к нулю, находя экстремум. Этот экстремум будет максимумом функции (минимумы - при alpha = 0 и alpha = 2*pi)
прости решать некогда
Стенгазету можно сделать на тему периметра и площади разных фигур,и написать их формулы.
стен газеты можно сделать про дроби как их "+", "-", ":", "*".
стен газету можно сделать про уравнения как их решать и формулы.
А можно про разные задачи сделать,как их решать и много стихов.
сделать кто открыл больший вклад в математику и в каком году и описать это)
Удачи