Обсудите два противоположных тезиса: 1) магические и полумагические обычаи и верования, тяга к знахарям и экстрасенсам – это своеобразные стратегии выживания в периоды социального кризиса, они защищают индивида перед катастрофой. современная эпоха не выработала более жизнестойких альтернатив этим традиционным стратегиям, особенно в смысле психологической адаптации к кризису; 2) магические и полумагические обычаи и верования, тяга к знахарям и экстрасенсам – это варварство, невежество, истеричность одних и стремление заработать на этом других. необходимо разоблачать порицать эти явления в нашей жизни.
Наибольший общий делитель::
5313 = 3 · 7 · 11 · 23
3864 = 2 · 2 · 2 · 3 · 7 · 23
Общие множители чисел: 3; 7; 23
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (5313; 3864) = 3 · 7 · 23 = 483
5313 = 3 · 7 · 11 · 23
3864 = 2 · 2 · 2 · 3 · 7 · 23
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (5313; 3864) = 3 · 7 · 11 · 23 · 2 · 2 · 2 = 42504
Наибольший общий делитель НОД (5313; 3864) = 483
Наименьшее общее кратное НОК (5313; 3864) = 42504
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Пошаговое объяснение:
Укажите сколькими можно выбрать 9 клеток на доске
9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
Вспомним как выглядит доска судоку ( рис. 1 во вложении ).
Вся задача сводится к тому , что надо определить сколькими можно разместить цифру в одной клетке , в каждом квадратике 3 х 3 соблюдая условие , что в каждом столбце и каждой строчке будет только одна цифра .
Берем первый сверху ряд .
Пусть первая цифра будет стоять в левом верхнем квадрате . В квадрате 9 клеток , надо выбрать одну , значит у нас будет
выбрать эту клетку .
В следующем квадрате 3 х 3 одна строка у нас уже занята , значит 3 клетки мы не можем выбрать , остается 9-3 = 6 клеточек для выбора . Получаем :
выбрать одну клетку .
Переходим в следующий квадрат 3 х 3 . В нем у нас уже две строки заняты , значит мы не можем выбрать :
3 * 2 = 6 клеток , остается
9 - 6 = 3 клетки для выбора . Получаем :
выбрать одну клетку.
Для наглядности изобразим это на рисунке 2 ( во вложении).
Берем второй ряд.
В первом слева квадрате ( рис. 3 во вложении) у нас 3 клетки заняты , значит остается : 9 - 3 = 6 клеток для выбора . Получаем :
выбрать 1 клетку
В следующем квадрате заняты уже 5 клеток ( рис. 3) , остается :
9 - 5 = 4 клетки для выбора . Получаем :
выбрать 1 клетку
В последнем квадрате занято 7 клеток , остается :
9 - 7 = 2 клетки для выбора . Получаем :
выбрать 1 клетку .
Отметим это все на нашем рисунке 3 ( во вложении) .
Переходим к последнему ряду , третьему .
В первом квадрате занято 6 клеток , остается 9 - 6 = 3 клетки для выбора . Получаем :
выбрать 1 клетку
Во втором квадрате занято 7 клеток, остается : 9 - 7 = 2 клетки для выбора и получаем :
выбрать 1 клетку.
В третьем , последнем квадрате нашей доски , свободный остается 1 квадрат , получаем :
1 * 1 = 1 единственный выбора клетки.
Отмечаем на рисунке 4 ( во вложении)
Мы выбрали 9 клеток , соблюдая условие задачи.
Теперь найдем сколькими можно выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.
По правилу умножения :
.
Существует выбрать 9 клеток доски 9 х 9, разделенной на девять квадратиков 3 х 3, так, чтобы в каждой строчке, в каждом столбце, и в каждом из девяти квадратиков 3 х 3 была выбрана ровно одна клетка.