Дано линейное уравнение: (1/2)*(3*x-5) = 8-(2/5)*(6-(5/2)*x) Раскрываем скобочки в левой части ур-ния 1/23*x-5 = 8-(2/5)*(6-(5/2)*x) Раскрываем скобочки в правой части ур-ния 1/23*x-5 = 8-2/56+5/2x) Приводим подобные слагаемые в правой части ур-ния: -5/2 + 3*x/2 = 28/5 + x Переносим свободные слагаемые (без x) из левой части в правую, получим: / означает дробь 3x/2=x+81/10
Переносим слагаемые с неизвестным x из правой части в левую: / означает дробь x/2=81/10
Разделим обе части ур-ния на 1/2 x = 81/10 / (1/2) Получим ответ: x = 81/5
(1/2)*(3*x-5) = 8-(2/5)*(6-(5/2)*x)
Раскрываем скобочки в левой части ур-ния
1/23*x-5 = 8-(2/5)*(6-(5/2)*x)
Раскрываем скобочки в правой части ур-ния
1/23*x-5 = 8-2/56+5/2x)
Приводим подобные слагаемые в правой части ур-ния:
-5/2 + 3*x/2 = 28/5 + x
Переносим свободные слагаемые (без x)
из левой части в правую, получим: / означает дробь 3x/2=x+81/10
Переносим слагаемые с неизвестным x
из правой части в левую: / означает дробь x/2=81/10
Разделим обе части ур-ния на 1/2
x = 81/10 / (1/2)
Получим ответ: x = 81/5
а) 1/2 : 1/4 : 1/4 = 2 : 1 : 1
4/2 : 4/4 : 4/4 = 2 : 1 : 1 (умножили на 4)
б) 1 1/3 : 1 1/2 : 1 = 8 : 9 : 6
4/3 : 3/2 : 1 = 24/3 : 18/2 : 6/1 = 8 : 9 : 6 (умножили на 6)
в) 0,5 : 1 : 1,5 = 1 : 2 : 3 (умножили на 2)
г) 4,5 : 2,7 : 1,8 = 45 : 27 : 18 (умножили на (10)