Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
1. Ребра наклонены под одинаковым углом: Вершина S проектируется в т. О. Проекции ребер АО, ВО, СО Треугольники AOS, BOS, COS равны по стороне OS и двум углам. Следовательно АО=ВО=СО. Значит точка О равно удалена от ВЕРШИН треугольника. Она центр ОПИСАННОЙ окружности.
2.Грани наклонены под одинаковым углом: (Это углы между высотами граней и их проекиями на плоскость основания Вершина S проектируется в т. О. Все высоты граней содержат точку S. Основания высот граней точки А', В', С' Проекции этих высот А'О, В'О, С'О Треугольники A'OS, B'OS, C'OS равны по стороне OS и двум углам. Следовательно А'О=В'О=С'О. По теореме о трех перпендикулярах они перпендикулярны сторонам. Значит точка О равно удалена от СТОРОН треугольника. Она центр ВПИСАННОЙ окружности. в эту пирамиду можно вписать конус (пирамида описана около конуса)
Теперь вопрос: Равносильны ли высказывания: 1) все боковые ребры пирамиды образуют одинаковые углы с плоскостью основания 2) все двугранные углы при основании пирамиды равны.
Равносильность предполагает, что из 1) следует 2) и из2) следует 1) Пусть 1) верно. тогда S проектируется в центр описанной окружности. если при этом и все двугранные углы при основании пирамиды равны, то S проектируется и в центр вписанной окружности. Т. е. центры вписанной и описанной окружности совпадают. А такое возможно только для равностороннего треугольника. Таким образом 1) и 2) вообще говоря не равносильны. Неравносильны для всех пирамид кроме тех, у которых в основании равносоронний треугольник. теперь к самой задаче:
ответ: 45 (лично мое решение, которое я писала)
Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
18+12+6+6+3=45
1. Ребра наклонены под одинаковым углом:
Вершина S проектируется в т. О. Проекции ребер АО, ВО, СО
Треугольники AOS, BOS, COS равны по стороне OS и двум углам.
Следовательно АО=ВО=СО. Значит точка О равно удалена от ВЕРШИН треугольника. Она
центр ОПИСАННОЙ окружности.
2.Грани наклонены под одинаковым углом:
(Это углы между высотами граней и их проекиями на плоскость основания
Вершина S проектируется в т. О.
Все высоты граней содержат точку S.
Основания высот граней точки А', В', С'
Проекции этих высот А'О, В'О, С'О
Треугольники A'OS, B'OS, C'OS равны по стороне OS и двум углам.
Следовательно А'О=В'О=С'О.
По теореме о трех перпендикулярах они перпендикулярны сторонам.
Значит точка О равно удалена от СТОРОН треугольника. Она центр ВПИСАННОЙ
окружности. в эту пирамиду можно вписать конус (пирамида описана около конуса)
Теперь вопрос: Равносильны ли высказывания:
1) все боковые ребры пирамиды образуют одинаковые углы с плоскостью основания
2) все двугранные углы при основании пирамиды равны.
Равносильность предполагает, что из 1) следует 2) и из2) следует 1)
Пусть 1) верно. тогда S проектируется в центр описанной окружности.
если при этом и все двугранные углы при основании пирамиды равны, то S
проектируется и в центр вписанной окружности.
Т. е. центры вписанной и описанной окружности совпадают.
А такое возможно только для равностороннего треугольника.
Таким образом 1) и 2) вообще говоря не равносильны.
Неравносильны для всех пирамид кроме тех, у которых в основании равносоронний
треугольник.
теперь к самой задаче: