О е Решение составных задач. Урок 2 Рассмотри таблицу. Реши задачу. S 12 км/ч 2 ч 36 км }?4 одинаковая 2 ч 60 км Pewenue: (ч) — время 1. (ч) — время 2. (ч) - всего.
пусть для какого-то i верно, что 1+2+4+8+...+2^i=2^(i+1)-1
тогда 1+2+4+8+...+2^i+2^(i+1)=2^(i+1)+2^(i+1)-1=2^(i+2)-1
ч.т.д.
Теперь заметим, что если у нас есть 2^101 монет, то нам потребуется 101 взвешивание т.к. за 1 взвешивание мы отсекаем не больше половины монет.
Теперь заметим, как мы сможем взвесить 2^100+2^99+2^98++2+1
Взвесим первые 2^100 монет, разбив их на 2 кучки.
Если кучки весят одинаково(все монеты настоящие), то берем следующие 2^99, 2^98, и т.д.
Если первые 2+4+8+...2^100 монет настоящие, то последняя монета - фальшивая. пусть на i шаге нашлась кучка из 2^(100-i) монет, среди которых есть ненастоящяя. тогда у нас есть еще (100-i) взвешиваний, и мы сможем определить фальшивую монету.
8/24х+6/24х+3/24х=34/45
17/24х=34/45
х=34/45÷17/24
х=34/45×24/17
х=2/45×24/1
х=48/45 х=1 3/45
2)3 3/4х-1 2/3=2 11/12
3 3/4х=2 11/12+1 2/3
3 3/4х=2 11/12+1 8/12
3 3/4х= 4 7/12
х=4 7/12÷3 3/4 х= 55/12÷15/4
х=55/12×4/15
х=11/3×1/3 х=11/9 х=1 2/9
3)4 2/15-3 1/9х=1 4/5
3 1/9х=4 2/15-1 4/5 3 1/9х=4 2/15-1 12/15 3 1/9х=3 17/15-1 12/15
3 1/9х=2 5/15 3 1/9х=2 1/3
х=2 1/3÷3 1/9 х= 7/3÷28/9 х=7/3×9/28
х=3/4
4)5/16х+2 3/4=6 1/8
5/16х=6 1/8-2 3/4
5/16х=6 1/8-2 6/8 5/16х= 5 9/8-2 6/8 5/16х=3 3/8
х=3 3/8÷5/16 х=27/8÷5/16 х=27/8×16/5
х=27/1×2/5
х=54/5 х=10 4/5
Лемма ученика 57 школы: 1+2+4+8+...+2^n= 2^(n+1)-1
Докажем по индукции:
База:
1 = 2-1
1+2 = 3 = 4-1
Шаг:
пусть для какого-то i верно, что 1+2+4+8+...+2^i=2^(i+1)-1
тогда 1+2+4+8+...+2^i+2^(i+1)=2^(i+1)+2^(i+1)-1=2^(i+2)-1
ч.т.д.
Теперь заметим, что если у нас есть 2^101 монет, то нам потребуется 101 взвешивание т.к. за 1 взвешивание мы отсекаем не больше половины монет.
Теперь заметим, как мы сможем взвесить 2^100+2^99+2^98++2+1
Взвесим первые 2^100 монет, разбив их на 2 кучки.
Если кучки весят одинаково(все монеты настоящие), то берем следующие 2^99, 2^98, и т.д.
Если первые 2+4+8+...2^100 монет настоящие, то последняя монета - фальшивая. пусть на i шаге нашлась кучка из 2^(100-i) монет, среди которых есть ненастоящяя. тогда у нас есть еще (100-i) взвешиваний, и мы сможем определить фальшивую монету.
По лемме ученика 57 школы 1+2++2^100= 2^101-1
а 2^101 монет быть не может.
ответ:2^101-1