Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.
1. Найдем количество чисел, в записи которых нет нуля.
Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:
Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:
Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:
2. Найдем количество чисел, в записи которых есть ноль.
Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:
Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:
Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:
3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:
Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.
1. Найдем количество чисел, в записи которых нет нуля.
Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:
Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:
Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:
2. Найдем количество чисел, в записи которых есть ноль.
Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:
Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:
Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:
3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:
ответ: 567
По условию 60 % = 0.6 - доля мужчин в городе
Тогда: 1 - 0.6 = 0.4 - доля женщин в городе
Найдем доли мужчин левшей и женщин левшей.
Мужчин левшей 20 % = 0.2 от общего числа, значит:
0.6 · 0.2 = 0.12 - доля мужчин левшей
Пусть женщины левши составляют долю p от общего числа женщин:
0.4 · p = 0.4p - доля женщин левшей
Но всего левши составляют 21.6 % = 0.216 всех людей. Значит:
0.12 + 0.4p = 0.216
0.4p = 0.216 - 0.12
0.4p = 0.096
p = 0.096 : 0.4
p = 0.24
0.24 = 24 %
Таким образом, 24 % женщин - левши
ответ: 24 %