Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
Найдём значение каждой дроби:
а) 13 + 4/13 * 4 = 17/52.
Действительно, 17 и 52 не делятся на 17.
б) 23 + 5/23 * 6 = 28/138.
Мы можем сократить дробь на 2:
28/138 = 14/69.
Дальше мы сократить эту дробь не можем.
в) 31 + 10/30 - 10 = 41/20.
Эту дробь мы сократить не можем.
г) 71 - 10/41 - 10 = 61/31.
Эту дробь мы также сократить не можем.
д) 41 + 6/53 * 6 = 47/318.
Эта дробь также несократима.
е) 101 + 2/109 - 2 = 103/107.
И эту дробь мы тоже сократить не можем.
Можно сократить только дробь б).
Пошаговое объяснение:
Как-то так
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3