Непрерывная случайная величина Х распределена равномерно
на отрезке [a, b]. Найдите: а) функцию распределения НСВ Х и
постройте ее график; б) плотность вероятности НСВ Х и построй-
те ее график; в) ее числовые характеристики; г) вероятность по-
падания НСВ Х на интервал (a; b), если:
1) a = 2, b = 5; интервал (3;5);
2) a = 1, b = 5; интервал (2;4);
3) a = 2, b = 7; интервал (4;5);
4) a = 3, b = 8; интервал (4;7);
5) a = 4, b = 10; интервал (3;8);
6) a = 5, b = 12; интервал (8;10).
a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.