недельная зарплата сотрудника фирмы определяется выражением 62 000 n, здесь n- количество отобранных часов за неделю. если в первую неделю было обработано 44 часа,а вторую- 40, найдите его зарплату за две недели различными
Рисуем прямоугольник АВСК , проводим диагональ АС (в прямоугольнике диагонали одинаковы ) . АВ=СК=х см , значит ВС=АК=12/х см (т.к. S = а*в) . Р прям. = 2(а+в)=2*(х+12/х)=14 , приводим у общему знаменателю : 2х^2+24=14х 2х^2-14х+24=0 D=196-192=4=2^2 Х=(14-2)/4=3 или (14+2)/4=4 Разницы какой х Вы возьмете нету , потому что если будет 3 то другая сторона будет 12/3=4 , а если - 4 , то другая - 12/4=3 ( что так , что так будет 3 и 4) , теперь смотрим на треугольник АСК , АС=корень из ( 9+16) = 5 см
Y=11x+ln =11x+11 ln(x+15) Для нахождения наименьшего значения функции находим первую производную данной функции y ' =(11x +ln) ' =11+ 11 = = Решаем уравнение (находим критические точки) y '=0 11x+154=0 ⇒ 11x = - 154 ⇒ x= - 154/11 = -14 При x < -14 производная функции отрицательна (функция убывает), при x > -14 производная функции положительна (функция возрастает), значит в критической точке x = -14 функция принимает минимум, найдем это значение y(-14) =11*(-14) - 11ln(-14+15) = -154 -11*ln 1 = -154 -11*0= -154 ответ: -154
Для нахождения наименьшего значения функции находим первую производную данной функции
y ' =(11x +ln) ' =11+ 11 = =
Решаем уравнение (находим критические точки)
y '=0
11x+154=0 ⇒ 11x = - 154 ⇒ x= - 154/11 = -14
При x < -14 производная функции отрицательна (функция убывает), при x > -14 производная функции положительна (функция возрастает), значит в критической точке x = -14 функция принимает минимум, найдем это значение
y(-14) =11*(-14) - 11ln(-14+15) = -154 -11*ln 1 = -154 -11*0= -154
ответ: -154