1. Формула для объёма всего "пирамидообразного" V1 = 1/3 * S1 * h1 Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда S1 = pi * a^2 S2 = 4a^2 h2 = h1 V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз. Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5. В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8 S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi
поклажа О ?узлов, но сравняется с М, если 1 возьмет у М;↓ поклажа М ? узлов, но будет в два раза >О, если возьмет 1 узел у О.↑ Решение.
О + 1 = М - 1 запись первого условия; М = О + 2 следует из первого условия; 2*(О - 1) = М + 1 запись второго условия; 2О - 2 = (О +2) + 1; подстановка выражения для О во второе условие; 2О - О = 2 + 2 + 1 перегруппировка выражения; О = 5 (узлов) поклажа осла; М = 5 + 2 = 7 (узлов) поклажа мула. ответ: 5 узлов тащил осел, 7 узлов тащил мул. Проверка: 5+1 = 7-1; 6=6; Решение отвечает первому условию. 7+1 = 2(5 -1); 8 = 8 Отвечает второму условию.
1). 1 + 1 = 2 (узла) разница в узлах между М и О, так как для равенства у М нужно 1 отнять, а О 1 добавить; 2). 2 + 1 +1 = 4 (узла) будет разница если мул возьмет у О еще один узел, а у того станет на 1 узел меньше; 3). 4 * 2 = 8 (узлов) будет поклажа М с одним "лишним" узлом, взятым у О, так как при этом по условию М будет тащить в два раза больше О. Т.е. разница в 4 узла будет составлять половину его поклажи. 4). 8 - 1 = 7 (узлов) первоначальная поклажа М; 5). 7 - 2 = 5 (узлов) первоначальная поклажа О. ответ: Мул тащит 7 узлов, Осел тащит 5 узлов. Проверка: 5+1 = 7-1; 6=6; 7+1 = 2(5-1); 8 = 8.
Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда
S1 = pi * a^2
S2 = 4a^2
h2 = h1
V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз.
Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5.
В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8
S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi
поклажа М ? узлов, но будет в два раза >О, если возьмет 1 узел у О.↑
Решение.
О + 1 = М - 1 запись первого условия;
М = О + 2 следует из первого условия;
2*(О - 1) = М + 1 запись второго условия;
2О - 2 = (О +2) + 1; подстановка выражения для О во второе условие;
2О - О = 2 + 2 + 1 перегруппировка выражения;
О = 5 (узлов) поклажа осла;
М = 5 + 2 = 7 (узлов) поклажа мула.
ответ: 5 узлов тащил осел, 7 узлов тащил мул.
Проверка: 5+1 = 7-1; 6=6; Решение отвечает первому условию. 7+1 = 2(5 -1); 8 = 8 Отвечает второму условию.
1). 1 + 1 = 2 (узла) разница в узлах между М и О, так как для равенства у М нужно 1 отнять, а О 1 добавить;
2). 2 + 1 +1 = 4 (узла) будет разница если мул возьмет у О еще один узел, а у того станет на 1 узел меньше;
3). 4 * 2 = 8 (узлов) будет поклажа М с одним "лишним" узлом, взятым у О, так как при этом по условию М будет тащить в два раза больше О. Т.е. разница в 4 узла будет составлять половину его поклажи.
4). 8 - 1 = 7 (узлов) первоначальная поклажа М;
5). 7 - 2 = 5 (узлов) первоначальная поклажа О.
ответ: Мул тащит 7 узлов, Осел тащит 5 узлов.
Проверка: 5+1 = 7-1; 6=6; 7+1 = 2(5-1); 8 = 8.