Пусть Петя принес A, Ваня B, Толя C книг. Отсюда: A=(B+C+65)/2 - (1) B=(A+C+65)/3 - (2) C=(A+B+65)/4 - (3) Подставим значения (3) в уравнения (2) и (3): A=(B+(A+B+65)/4+65)/2 - (4) B=(A+(A+B+65)/4+65)/3 - (5) Упростим (4): A=(4B+A+B+65+260)/8 8A=4B+A+B+65+260 7A=5B+325 - (6) Упростим (5): B=(4A+A+B+65+260)/12 12B=4A+A+B+65+260 11B=5A+325 B=(5A+325)/11 - (7) Подставим (7) в (6): 7A=(5(5A+325)/11 + 325) 7A=(25A+1625)/11 + 325 77A=25A+1625 + 3575 52A=5200 A=100 100 книг принес Петя. Подставим значение А в (7): B=(5*100+325)/11 B=825/11 B=75 75 книг принес Ваня. Подставим значения A и В в (3): C=(100+75+65)/4 C=240/4 C=60 60 книг принес Толя. 100+75+60+65=300 Петя, Ваня, Толя и Артем вместе принесли 300 книг.
Второй
Если Петя принес 1/2 часть от книг, принесенных другими ребятами, значит он принес 1/3 книг. Аналогично Ваня принес 1/4, а Толя 1/5. Получаем уравнение 1/3X+1/4X+1/5X+65=X. X-1/3X-1/4X-1/5X=65. (60-20-15-12)*X=65*60. 13X=65*60. X=5*60=300
Преобразование дробей во втором производится на основании нижеследующего доказательства. N - общее количество книг. A - количество учебников принесенных первым учеником. B - количество учебников принесенных другими учениками. A + B = N Если первый ученик принес 1/2 часть от остальных тогда 2A = B A + 2A = N 3A = N A = N/3 Отсюда мы и выводим, что если ученик принес 1/X от количества учебников, принесенных другими учениками, значит он принес 1/(X+1) от количества учебников, принесенных всеми учениками.
В ряд лежат n монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать. При каких n у первого игрока есть выигрышная стратегия? 1 ПОПРОСИ БОЛЬШЕ ОБЪЯСНЕНИЙ СЛЕДИТЬ ОТМЕТИТЬ НАРУШЕНИЕ! от Tzeench29 03.09.2015
ОТВЕТЫ И ОБЪЯСНЕНИЯ adelli2003 середнячок 2015-09-04T22:27:19+00:00 При любом n первый игрок выигрывает. Если n — нечетное, то пусть первый заберет центральную монету. Если же n — четное, то пусть первый заберет две центральных монеты. Тогда (в обоих случаях) у нас останется две одинаковые кучи монет. Теперь заметим, что по правилам игры мы не можем брать монеты из разных куч, поэтому можно применить симметричную стратегию (её может применить первый игрок). Эта стратегия такова: мы будем брать то же количество монет, которое взял второй игрок, только из другой кучи. Так как после нашего хода всегда получаются две кучи с одинаковым числом монет, а после хода второго количество монет в кучах разное, то при такой стратегии первый игрок победит
Пусть Петя принес A, Ваня B, Толя C книг.
Отсюда:
A=(B+C+65)/2 - (1)
B=(A+C+65)/3 - (2)
C=(A+B+65)/4 - (3)
Подставим значения (3) в уравнения (2) и (3):
A=(B+(A+B+65)/4+65)/2 - (4)
B=(A+(A+B+65)/4+65)/3 - (5)
Упростим (4):
A=(4B+A+B+65+260)/8
8A=4B+A+B+65+260
7A=5B+325 - (6)
Упростим (5):
B=(4A+A+B+65+260)/12
12B=4A+A+B+65+260
11B=5A+325
B=(5A+325)/11 - (7)
Подставим (7) в (6):
7A=(5(5A+325)/11 + 325)
7A=(25A+1625)/11 + 325
77A=25A+1625 + 3575
52A=5200
A=100
100 книг принес Петя.
Подставим значение А в (7):
B=(5*100+325)/11
B=825/11
B=75
75 книг принес Ваня.
Подставим значения A и В в (3):
C=(100+75+65)/4
C=240/4
C=60
60 книг принес Толя.
100+75+60+65=300
Петя, Ваня, Толя и Артем вместе принесли 300 книг.
Второй
Если Петя принес 1/2 часть от книг, принесенных другими ребятами, значит он принес 1/3 книг. Аналогично Ваня принес 1/4, а Толя 1/5. Получаем уравнение 1/3X+1/4X+1/5X+65=X. X-1/3X-1/4X-1/5X=65. (60-20-15-12)*X=65*60. 13X=65*60. X=5*60=300
Преобразование дробей во втором производится на основании нижеследующего доказательства.
N - общее количество книг.
A - количество учебников принесенных первым учеником.
B - количество учебников принесенных другими учениками.
A + B = N
Если первый ученик принес 1/2 часть от остальных тогда
2A = B
A + 2A = N
3A = N
A = N/3
Отсюда мы и выводим, что если ученик принес 1/X от количества учебников, принесенных другими учениками, значит он принес 1/(X+1) от количества учебников, принесенных всеми учениками.
Задайте вопрос из школьного предмета
1
5-9 АЛГЕБРА
В ряд лежат n монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать. При каких n у первого игрока есть
выигрышная стратегия?
1
ПОПРОСИ БОЛЬШЕ ОБЪЯСНЕНИЙ СЛЕДИТЬ ОТМЕТИТЬ НАРУШЕНИЕ! от Tzeench29 03.09.2015
ОТВЕТЫ И ОБЪЯСНЕНИЯ
adelli2003 середнячок
2015-09-04T22:27:19+00:00
При любом n первый игрок выигрывает. Если n — нечетное, то пусть первый заберет центральную монету. Если же n — четное, то пусть первый заберет две центральных монеты. Тогда (в обоих случаях) у нас останется две одинаковые кучи монет. Теперь заметим, что по правилам игры мы не можем брать монеты из разных куч, поэтому можно применить симметричную стратегию (её может применить первый игрок). Эта стратегия такова: мы будем брать то же количество монет, которое взял второй игрок, только из другой кучи. Так как после нашего хода всегда получаются две кучи с одинаковым числом монет, а после хода второго количество монет в кучах разное, то при такой стратегии первый игрок победит