Назови утверждения, соответствующие данной записи H∈m . (Правильными могут быть несколько ответов.)
ТочкаHявляется точкой прямойm
ТочкаHнаходится на прямойm
ТочкаHнаходится не на прямойm
Прямаяmне проходит через точкуH
Прямаяmпроходит через точкуH
ТочкаHне находится на прямойm
ПрямаяHпроходит через точкуm
решите
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение:
Пошаговое объяснение:
задача решается при кругов Эйлера
у нас
всего 35
ф =24
в = 18
б =12
ф+в =10
ф+б = 8
в+б =5
будем смотреть на круги и считать
если мы сложим ф+в просто как 24+18 то увидим, что те, кто занимается двумя этими видами одновременно, учтутся 2 раза. поэтому правильное объединение множеств будет ф∪в = 24+18-10
если мы сюда добавим баскетбол просто как 12, то увидим, что дважды учтутся те, кто занимается ф+б и в+б. поэтому их надо тоже вычесть
т.о. получится такое объединение множеств ф∪в∪б = 24+18-10+12-8-5
но при этом те, кто занимается сразу всеми видами отнялись дважды.
поэтому их надо прибавить еще раз. их у нас Х.
вот, получили формулу
ф∪в∪б = 24+18-10+12-8-5+ Х =35
31+Х=35
Х=4
теперь заполним круги и проверим весь счет
Ф =10+6+4+4=24
в = 7+6+4+1=18
б = 4+4+1+3=12
ф+в 6+4=10
в+б = 4+1=5
ф+б = 4+4 = 8
10+6+7+4+4+1+3=35
круги Эйлера построены верно, задача решена верно - сразу тремя видами спорта занимаются 4 ученика