Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя - единицу и самого себя. Другими словами, число А является простым, если оно больше 1 и при этом делится без остатка только на 1 и на А.
Натуральные числа, которые больше единицы и не являются простыми, называются составными. Для определения свойства числа как составное, достаточно указать только одного делителя строго между 1 и самим числом. Все четные натуральные числа, кроме 2 (которое единственное четное простое число) имеют число 2 как делитель.
A) Простые числа,большие 30, но меньше 50: 31 ; 37 ; 41 ; 43 ; 47
B) Все составные числа, большие 30, но меньше 50:
32, 34, 36, 38, 40, 42, 44, 46, 48 - четные числа, то есть делятся на 2.
Предположим, что найдется такое простое число. Тогда все числа после него - составные, и количество всех простых чисел ограничено, мы можем их все записать.
Пусть у нас есть это конечное множество простых чисел. Тогда посмотрим на число A, которое на 1 больше их наибольшего общего кратного.
Тогда если А простое, то мы нашли простое число, которое не входит в наше множество простых чисел. Мы доказали, что такое множество бесконечно
Если А все же не простое, то есть хотя бы одно число, на которое делится А. Тогда это число никак не может быть в нашем множестве, так как все числа данного множества являются делителями их наибольшего общего кратного, а А на 1 больше. Тогда мы снова нашли новое простое число. Значит множество простых чисел бесконечно!
А поскольку любое простое число является натуральным, то для любого "самого большого" простого натурального числа найдется число большее. Значит такого числа не существует!
A) 31 ; 37 ; 41 ; 43 ; 47
B) 32; 33; 34; 35; 36; 38; 39; 40; 42; 44; 45; 46; 48; 49
Пошаговое объяснение:
Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя - единицу и самого себя. Другими словами, число А является простым, если оно больше 1 и при этом делится без остатка только на 1 и на А.
Натуральные числа, которые больше единицы и не являются простыми, называются составными. Для определения свойства числа как составное, достаточно указать только одного делителя строго между 1 и самим числом. Все четные натуральные числа, кроме 2 (которое единственное четное простое число) имеют число 2 как делитель.
A) Простые числа,большие 30, но меньше 50: 31 ; 37 ; 41 ; 43 ; 47
B) Все составные числа, большие 30, но меньше 50:
32, 34, 36, 38, 40, 42, 44, 46, 48 - четные числа, то есть делятся на 2.
33 - делится на 3
35 - делится на 5
39 - делится на 3
45 - делится на 5
49 - делится на 7
Такого числа нет!
Пошаговое объяснение:
Предположим, что найдется такое простое число. Тогда все числа после него - составные, и количество всех простых чисел ограничено, мы можем их все записать.
Пусть у нас есть это конечное множество простых чисел. Тогда посмотрим на число A, которое на 1 больше их наибольшего общего кратного.
Тогда если А простое, то мы нашли простое число, которое не входит в наше множество простых чисел. Мы доказали, что такое множество бесконечно
Если А все же не простое, то есть хотя бы одно число, на которое делится А. Тогда это число никак не может быть в нашем множестве, так как все числа данного множества являются делителями их наибольшего общего кратного, а А на 1 больше. Тогда мы снова нашли новое простое число. Значит множество простых чисел бесконечно!
А поскольку любое простое число является натуральным, то для любого "самого большого" простого натурального числа найдется число большее. Значит такого числа не существует!