В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
artemy050702
artemy050702
20.11.2021 02:30 •  Математика

Найти промежутки монотонности функции y = x^3 – 2x^2 – 3

Показать ответ
Ответ:
ktdgegrbyfk
ktdgegrbyfk
15.10.2020 15:23
ПОЯСНЕННЯ:

f(x) = y = х³ - 2х² - 3

щоб дослідити функцію на монотонність, слід:

1)знайти її похідну f`(x);

2)знайти критичні точки функції (f`(x) = 0 або f`(x) не існує);

3)визначити знак похідної на кожному з проміжків, на які критичні точки розбивають область визначення функції;

4)визначити проміжки зростання та спадання функції.

РОЗВ'ЯЗУВАННЯ:

y = х³ - 2х² - 3

1)y`= (x³)` - (2x²)` - (3)` = 3x² - 4x = х(3х-4)

пункти 2 та 3 можемо пропустити оскільки ОДЗ: х∈R

4) функція f(x) зростає, якщо f`(x)>0

х(3х-4)>0

х∈(-∞;0)∪(4/3;+∞)

функція f(x) спадає, якщо f`(x)<0

х(3х-4)<0

х∈(0;4/3)

ВІДПОВІДЬ:

у↑ при х∈(-∞;0)∪(4/3;+∞);

у↓ при х∈(0;4/3).

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота