В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
abramchuk2
abramchuk2
03.12.2022 00:07 •  Математика

Найти общее решение диф. уравнения понизив его порядок: y"-y'-x=0

Показать ответ
Ответ:
MCKOLYA
MCKOLYA
13.07.2020 18:39

Пусть y'=u;~~ y''=u', получим:

t'-t=x

Умножим левую и правую части уравнения на множитель \mu(x):

\mu (x)=e^{-\int dx}=e^{-x}, получаем

t'\cdot e^{-x}-te^{-x}=xe^{-x}\\ \\ (t\cdot e^{-x})'=xe^{-x}

Интегрируя обе части уравнения, получим

te^{-x}=\displaystyle \int xe^{-x}dx=\left\{\begin{array}{ccc}u=x;~~ du=dx\\ dv=e^{-x}dx;~~ v=-e^{-x}\end{array}\right\}=-xe^{-x}+\int e^{-x}dx=\\ \\ =-xe^{-x}-e^{-x}+C_1\\ \\ t=(-xe^{-x}-e^{-x}+C_1)\cdot e^x=C_1e^{x}-x-1

Выполним обратную замену:

y'=C_1e^x-x-1\\ \\ \displaystyle y=\int (C_1e^x-x-1)dx=C_1e^x-\dfrac{x^2}{2}-x+C_2

ответ: y=C_1e^x-\dfrac{x^2}{2}-x+C_2

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота