Скорость поезда вышедшего со станции Мойынты, 77,25 км/ч Скорость поезда вышедшего со станции Шу, на 3 целых 1/2 км/ч меньше, значит 77,25-3,5 = 73,75км/ч
Оба они за 1 ч пройдут расстояние равному 77,25+73,75=151 км
Отсюда вывод: за 3 ч они пройдут расстояние 151*3=453 км
расстояние между станциями Мойынты и Шу: 453 км
Берем за x - расстояние между двумя станциями в километрах тогда они оба расстояние равное x/3 км
Тогда уравнение будет выглядит следующим образом: (77, 25 + (77, 25-3,5))*3 = x Решаем уравнение: (77,25 + 73,75) * 3 = х 77,25 + 73, 75 = х/3 151 = х/3 х=151*3=453
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC. Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия. Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C. Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. Точка M (середина AC): x=(-1+3)/2=1 y=(2+(-2))/2=0 z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC): x=(1+3)/2=2 y=(0+(-2))/2=-1 z=(4+1)/2=5/2
Скорость поезда вышедшего со станции Шу, на 3 целых 1/2 км/ч меньше, значит 77,25-3,5 = 73,75км/ч
Оба они за 1 ч пройдут расстояние равному 77,25+73,75=151 км
Отсюда вывод: за 3 ч они пройдут расстояние 151*3=453 км
расстояние между станциями Мойынты и Шу: 453 км
Берем за x - расстояние между двумя станциями в километрах
тогда они оба расстояние равное x/3 км
Тогда уравнение будет выглядит следующим образом:
(77, 25 + (77, 25-3,5))*3 = x
Решаем уравнение:
(77,25 + 73,75) * 3 = х
77,25 + 73, 75 = х/3
151 = х/3
х=151*3=453
ответ:453 км
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2
N(2;-1;5/2)
MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2
ответ, разумеется, такой же: длина MN равна 1,5.