Вообще это теорема Рассмотрим какие-нибудь две диагонали куба, например А1А3' и А4А'2. Так как четырехугольники А1А2А3А4 и А2А'2А'3А3 — квадраты с общей стороной А2А3, то их стороны А1А4 и A'2A'3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней куба по параллельным прямым А1А'2 и А 4А' 3. Следовательно, четырехугольник А4А 1A'2A'3 — параллелограмм. Диагонали куба А1А3' и А4А'2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.Аналогично доказывается, что диагонали А1А3' и А2А4' , а также диагонали А1А3' и А3А1' пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали куба пересекаются в одной точке и точкой пересечения делятся пополам. Доказано.
Обозначим товары их начальными буквами: Х, Т, М. 3 человека купили Х+Т+М. Они входят в число покупателей, купивших по две вещи, значит: Т+Х купили 15-3=12 человек. Т+М купили 19-3=16 человек. М+Х купили 20-3=17 человек. Всего этими покупателями куплено: Телевизоров 12+3+16=31 (т) Оставшиеся 37-31=6 телевизоров купили 6 человек. Холодильников куплено теми, кто купил больше одного товара, 35-(12+3+17)=32 (х) Оставшиеся купили 35-32=3 человека. Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара. Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи и 6+3=9 (чел) купили по одному виду товаров. Всего 48+9=57 человек. Из вошедших в магазин 65-57=8 челове ушли без покупок.
Рассмотрим какие-нибудь две диагонали куба, например А1А3' и А4А'2. Так как четырехугольники А1А2А3А4 и А2А'2А'3А3 — квадраты с общей стороной А2А3, то их стороны А1А4 и A'2A'3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней куба по параллельным прямым А1А'2 и А 4А' 3. Следовательно, четырехугольник А4А 1A'2A'3 — параллелограмм. Диагонали куба А1А3' и А4А'2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.Аналогично доказывается, что диагонали А1А3' и А2А4' , а также диагонали А1А3' и А3А1' пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали куба пересекаются в одной точке и точкой пересечения делятся пополам. Доказано.
3 человека купили Х+Т+М.
Они входят в число покупателей, купивших по две вещи, значит:
Т+Х купили 15-3=12 человек.
Т+М купили 19-3=16 человек.
М+Х купили 20-3=17 человек.
Всего этими покупателями куплено:
Телевизоров 12+3+16=31 (т)
Оставшиеся 37-31=6 телевизоров купили 6 человек.
Холодильников куплено теми, кто купил больше одного товара,
35-(12+3+17)=32 (х)
Оставшиеся купили 35-32=3 человека.
Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара.
Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи
и 6+3=9 (чел) купили по одному виду товаров.
Всего 48+9=57 человек.
Из вошедших в магазин 65-57=8 челове ушли без покупок.