Средним арифметическим называется сумма всех чисел, разделённое на их количество. Среднее арифметическое шести чисел 2,9. Обозначим сумму 6 арифметических чисел через х, тогда: х - сумма шести чисел 6 - количество чисел 2,9 - среднее арифметическое 6 чисел х:6=2,9 х=2,9*6=17,4 сумма шести чисел равна 17,4 Чтобы найти среднее арифметическое всех этих девяти чисел, нужно вычислить их сумму: сумма трех чисел и сумму шести чисел 10,23+17,4=27,63 Тогда сумма чисел: 27,63 количество чисел: 6+3=9 Среднее арифметическое=27,63:9=3,07 ответ: среднее арифметическое девяти чисел равно 3,07
Формулы для оценки абсолютной погрешности произведения и частного является более сложными, чем для суммы и разности. Поэтому для частного и произведения абсолютные погрешности обычно определяют, используя известную формулу
,
для a = x1x2...xn или a = x1/x2, где относительная погрешность произведения приближенных чисел определяется следующим образом:
Формула показывает, что относительные погрешности нескольких приближенных чисел складываются при выполнении операции умножения над этими числами.
Для предельной относительной погрешности формула имеет вид:
Аналогичным образом можно получить оценки погрешности частного двух приближенных чисел:
;
Погрешность функции
Основная задача теории погрешностей заключается в следующем: по известным значениям погрешностей исходных данных определить погрешность некоторой функции от этих величин.
Пусть задана функция f(x), значение которой требуется вычислить для приближенного значения аргумента , имеющего известную предельную абсолютную погрешность . Если функция f(x) дифференцируема в точке x0, то погрешность ее значения в этой точке можно оценить как
погрешность вычислительный приближенный функция
.
Считается, что формула справедлива, если относительные ошибки аргумента и результата малы по сравнению с единицей, т.е.
x0 << 1 и f(x0) << 1.
Нетрудно заметить, что вычисление функции в точке с большим модулем производной может привести к значительному увеличению погрешности результата по сравнению с погрешностью аргумента (катастрофическая потеря точности).
Погрешность функции нескольких переменных
Пусть y = f(x1, x2, …, xn) - приближенное значение функции от приближенных аргументов, , …, , которые имеют абсолютные ошибки , , …, .
Для определения используют принцип наложения ошибок, согласно которому учитывают влияние погрешностей каждого из аргументов в отдельности, а затем полученные погрешности суммируют. Для этого вначале временно предполагают, что все аргументы, кроме x1 являются точными числами, и находится соответствующая частная ошибка, вносимая только погрешностью этого аргумента :
,
где производная определяется по x1. Затем вычисляется частная ошибка, вносимая аргументом :
.
В итоге искомая погрешность функции , определяется суммой всех частных ошибок:
.
Условиями применимости этой формулы считается выполнение следующих неравенств:
xi << 1 (i = ); f(x1, x2, …, xn) << 1.
Обратная задача теории погрешностей
Обратная задача теории погрешностей заключается в определении погрешностей исходных данных по заданной погрешности результата. С использованием понятия функции нескольких переменных эта задача формулируются следующим образом: определить предельные погрешности аргументов функции, чтобы погрешность функции в целом не превышала бы заданной величины.
Эта задача является математически неопределенной, так как одна и та же погрешность результата может быть получена при разных погрешностях исходных данных. В простейшем случае для решения этой задачи используют принцип равных влияний, согласно которому в формуле для определения предельной абсолютной погрешности функции нескольких аргументов вида
.
все слагаемые из правой части принимаются равными:
Отсюда значения предельных абсолютных погрешностей аргументов определяются следующим образом:
Среднее арифметическое шести чисел 2,9. Обозначим сумму 6 арифметических чисел через х, тогда:
х - сумма шести чисел
6 - количество чисел
2,9 - среднее арифметическое 6 чисел
х:6=2,9
х=2,9*6=17,4
сумма шести чисел равна 17,4
Чтобы найти среднее арифметическое всех этих девяти чисел, нужно вычислить их сумму:
сумма трех чисел и сумму шести чисел
10,23+17,4=27,63
Тогда
сумма чисел: 27,63
количество чисел: 6+3=9
Среднее арифметическое=27,63:9=3,07
ответ: среднее арифметическое девяти чисел равно 3,07
Формулы для оценки абсолютной погрешности произведения и частного является более сложными, чем для суммы и разности. Поэтому для частного и произведения абсолютные погрешности обычно определяют, используя известную формулу
,
для a = x1x2...xn или a = x1/x2, где относительная погрешность произведения приближенных чисел определяется следующим образом:
Формула показывает, что относительные погрешности нескольких приближенных чисел складываются при выполнении операции умножения над этими числами.
Для предельной относительной погрешности формула имеет вид:
Аналогичным образом можно получить оценки погрешности частного двух приближенных чисел:
;
Погрешность функции
Основная задача теории погрешностей заключается в следующем: по известным значениям погрешностей исходных данных определить погрешность некоторой функции от этих величин.
Пусть задана функция f(x), значение которой требуется вычислить для приближенного значения аргумента , имеющего известную предельную абсолютную погрешность . Если функция f(x) дифференцируема в точке x0, то погрешность ее значения в этой точке можно оценить как
погрешность вычислительный приближенный функция
.
Считается, что формула справедлива, если относительные ошибки аргумента и результата малы по сравнению с единицей, т.е.
x0 << 1 и f(x0) << 1.
Нетрудно заметить, что вычисление функции в точке с большим модулем производной может привести к значительному увеличению погрешности результата по сравнению с погрешностью аргумента (катастрофическая потеря точности).
Погрешность функции нескольких переменных
Пусть y = f(x1, x2, …, xn) - приближенное значение функции от приближенных аргументов, , …, , которые имеют абсолютные ошибки , , …, .
Для определения используют принцип наложения ошибок, согласно которому учитывают влияние погрешностей каждого из аргументов в отдельности, а затем полученные погрешности суммируют. Для этого вначале временно предполагают, что все аргументы, кроме x1 являются точными числами, и находится соответствующая частная ошибка, вносимая только погрешностью этого аргумента :
,
где производная определяется по x1. Затем вычисляется частная ошибка, вносимая аргументом :
.
В итоге искомая погрешность функции , определяется суммой всех частных ошибок:
.
Условиями применимости этой формулы считается выполнение следующих неравенств:
xi << 1 (i = ); f(x1, x2, …, xn) << 1.
Обратная задача теории погрешностей
Обратная задача теории погрешностей заключается в определении погрешностей исходных данных по заданной погрешности результата. С использованием понятия функции нескольких переменных эта задача формулируются следующим образом: определить предельные погрешности аргументов функции, чтобы погрешность функции в целом не превышала бы заданной величины.
Эта задача является математически неопределенной, так как одна и та же погрешность результата может быть получена при разных погрешностях исходных данных. В простейшем случае для решения этой задачи используют принцип равных влияний, согласно которому в формуле для определения предельной абсолютной погрешности функции нескольких аргументов вида
.
все слагаемые из правой части принимаются равными:
Отсюда значения предельных абсолютных погрешностей аргументов определяются следующим образом: