Коэффициент c есть пересечение графика функции с Оy, оно у нас отрицательно, значит и коэффициент c меньше нуля. Вершина параболы находится X0 = -b/(2a) . Так как сама координата вершины параболы отрицательна, а коэффициент а положительный, то значит что и коэффициент b положительный. Так как мы имеем два пересечения с осью Ox, то значит, что дискриминант больше 0. Итого a>0, b>0, c<0, D>0 значит неверным будет неравенство пятое где a*b*c*D>0
Пусть в корзине было х яблок. Сначала из нее взяли ¹/₃х-2, затем - ¹/₂(х-¹/₃х+2)+1 = ¹/₂(²/₃х+2)+1 = ¹/₃х+1+1 = ¹/₃х+2. И наконец взяли ¹/₄(х-¹/₃х+2-¹/₃х-2) = ¹/₄*¹/₃х = ¹/₁₂х. Зная, что при этом осталось 12 яблок, составляем уравнение: ¹/₃х-2+¹/₃х+2+¹/₁₂х+12=х ⁹/₁₂х+12=х х-³/₄х=12 ¹/₄х=12 х=48
Можно и по действиям. 1)1-¹/₄=³/₄ - яблок осталось, что составляет 12. 2) 12:³/₄=16 (яблок) - осталось после второго "взятия". 3) (16+1)*2=34 (яблока) - осталось после первого "взятия". 4) (34-2):²/₃=32*³/₂=48 (яблок) - было всего.
ответ: НЕВЕРНОЕ неравенство под цифрой 5
Пошаговое объяснение:
Коэффициент c есть пересечение графика функции с Оy, оно у нас отрицательно, значит и коэффициент c меньше нуля. Вершина параболы находится X0 = -b/(2a) . Так как сама координата вершины параболы отрицательна, а коэффициент а положительный, то значит что и коэффициент b положительный. Так как мы имеем два пересечения с осью Ox, то значит, что дискриминант больше 0. Итого a>0, b>0, c<0, D>0 значит неверным будет неравенство пятое где a*b*c*D>0
Сначала из нее взяли ¹/₃х-2, затем - ¹/₂(х-¹/₃х+2)+1 = ¹/₂(²/₃х+2)+1 = ¹/₃х+1+1 = ¹/₃х+2. И наконец взяли ¹/₄(х-¹/₃х+2-¹/₃х-2) = ¹/₄*¹/₃х = ¹/₁₂х.
Зная, что при этом осталось 12 яблок, составляем уравнение:
¹/₃х-2+¹/₃х+2+¹/₁₂х+12=х
⁹/₁₂х+12=х
х-³/₄х=12
¹/₄х=12
х=48
Можно и по действиям.
1)1-¹/₄=³/₄ - яблок осталось, что составляет 12.
2) 12:³/₄=16 (яблок) - осталось после второго "взятия".
3) (16+1)*2=34 (яблока) - осталось после первого "взятия".
4) (34-2):²/₃=32*³/₂=48 (яблок) - было всего.
ответ. 48 яблок.