Пусть плоскость, проходящая через сторону AD основания ABCD пирамиды SABCD , пересекает боковые рёбра BS и CS соответственно в точках M и N , а плоскость, проходящая через сторону BC , пересекает боковые рёбра AS и DS соответственно в точках P и Q . Плоскости ASD и BPQC проходят через параллельные прямые AD и BC и пересекаются по прямой PQ . Значит, PQ || BC . Аналогично, MN || AD . Предположим, что AM || DN . Тогда BP || CQ . В этом случае две пересекающиеся прямые плоскости ASB соответственно параллельны двум пересекающимся прямым плоскости CSD , значит, эти плоскости параллельны, что невозможно. Таким образом, данные четырёхугольники – трапеции. Кроме того, PQ < AD и MN < BC , поэтому в равных трапециях BPQC и AMND соответственно равны основания BC и AD и основания PQ и MN . В четырехугольнике ABCD противоположные стороны AD и BC равны и параллельны, поэтому ABCD – параллелограмм и
РИС 1.
поэтому PM || AB . Аналогично, QN || CD , поэтому PM || QN , а т.к. PQ || MN , то PMNQ – параллелограмм. Значит, PM = NQ . Пусть отрезки AM и BP пересекаются в точке E , а отрезки CQ и DN – в точке F . Предположим, что AM = CQ и BP = DN . Тогда треугольники PEM и NFQ равны по трём сторонам, поэтому AMP = CQN . Значит, треугольники APM и CQN равны по двум сторонам и углу между ними. Тогда AP = CN , а т.к. AP/AS = DQ/DS , то AS = DS . Аналогично, BS = CS . Пусть O – ортогональная проекция вершины S на плоскость основания ABCD . Тогда OA = OD и OB = OC как ортогональные проекции равных наклонных. Значит, точка O лежит на серединных перпендикулярах к противоположным сторонам AD и BC параллелограмма ABCD . Поскольку параллелограмм ABCD не является прямоугольником, серединные перпендикуляры к двум его противоположным сторонам параллельны. Таким образом, предположение о том, что AM = DN и BP = CQ приводит к противоречию. Остается рассмотреть случай, когда AM = BP и CQ = DN . Рассуждая аналогично, получим, что AS = CS и BS = DS . Тогда точка O принадлежит серединным перпендикулярам к диагоналям AC и BD параллелограмма ABCD , т.е. совпадает с центром параллелограмма ABCD . Далее находим:
ответ: 160√3 / 3
Решение
Пусть плоскость, проходящая через сторону AD основания ABCD пирамиды SABCD , пересекает боковые рёбра BS и CS соответственно в точках M и N , а плоскость, проходящая через сторону BC , пересекает боковые рёбра AS и DS соответственно в точках P и Q . Плоскости ASD и BPQC проходят через параллельные прямые AD и BC и пересекаются по прямой PQ . Значит, PQ || BC . Аналогично, MN || AD . Предположим, что AM || DN . Тогда BP || CQ . В этом случае две пересекающиеся прямые плоскости ASB соответственно параллельны двум пересекающимся прямым плоскости CSD , значит, эти плоскости параллельны, что невозможно. Таким образом, данные четырёхугольники – трапеции. Кроме того, PQ < AD и MN < BC , поэтому в равных трапециях BPQC и AMND соответственно равны основания BC и AD и основания PQ и MN . В четырехугольнике ABCD противоположные стороны AD и BC равны и параллельны, поэтому ABCD – параллелограмм и
РИС 1.
поэтому PM || AB . Аналогично, QN || CD , поэтому PM || QN , а т.к. PQ || MN , то PMNQ – параллелограмм. Значит, PM = NQ . Пусть отрезки AM и BP пересекаются в точке E , а отрезки CQ и DN – в точке F . Предположим, что AM = CQ и BP = DN . Тогда треугольники PEM и NFQ равны по трём сторонам, поэтому AMP = CQN . Значит, треугольники APM и CQN равны по двум сторонам и углу между ними. Тогда AP = CN , а т.к. AP/AS = DQ/DS , то AS = DS . Аналогично, BS = CS . Пусть O – ортогональная проекция вершины S на плоскость основания ABCD . Тогда OA = OD и OB = OC как ортогональные проекции равных наклонных. Значит, точка O лежит на серединных перпендикулярах к противоположным сторонам AD и BC параллелограмма ABCD . Поскольку параллелограмм ABCD не является прямоугольником, серединные перпендикуляры к двум его противоположным сторонам параллельны. Таким образом, предположение о том, что AM = DN и BP = CQ приводит к противоречию. Остается рассмотреть случай, когда AM = BP и CQ = DN . Рассуждая аналогично, получим, что AS = CS и BS = DS . Тогда точка O принадлежит серединным перпендикулярам к диагоналям AC и BD параллелограмма ABCD , т.е. совпадает с центром параллелограмма ABCD . Далее находим:
Рис. 2
1)-А=
-4 2 -3
3 3 -1
-10 -1 1
-С=
2 0 -2
-1 -2 7
7 2 -1
С транспонированная=
-2 1 -7
0 2 -2
2 -7 1
-А-2С-3С транспонир.=
-4 2 -3
3 3 -1 +
-10 -1 1
4 0 -4
-2 -4 14 +
14 4 -2
6 -3 21
0 -6 6 =
-6 21 -3
6 -1 14
1 -10 19
-2 24 -4
2) АС=
-8-2-21 0-4-6 8+14+3
6-3-7 0-6-2 -6+21+1=
-20+1+7 0+2+2 20-7-1
-31 -10 25
-4 -8 16
-12 4 12
СА=
-8+0+20 4+0+2 -6+0-2
4-6-70 -2-6-7 3+2+7 =
-28+6+10 14+6+1 -21-2-1
12 6 -8
-72 -15 12
-32 21 -24
матрицы А и С некоммутативны, т.к. АС≠СА
3) Определители
IАI=12-20-9-(-90+4-6)=75
IСI=-4+0-4-(-28-28+0)=48
IАСI=2976+1920-400-(2400-1984+480)=3600
IСАI=4320-2304+12096-(3840+10368+3024)=4560
IСI*IАI=48*75=3600
Вывод IАСI≠IСАI; IАСI=IСI*IАI