1. При вычисления второй стороны прямоугольника видим, что в сечении получается удвоенный "египетский" треугольник с катетами 6 и 8 и гипотенузой 10 см. Радиус цилиндра R=8., высота = 6 см. Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³ ОТВЕТ: 384π см³ 2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м Угол между сторонами α= 60 град. Используем формулу S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м² Высота призмы H = S/a = √3/2 м² Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³ ОТВЕТ: 1 1/2 м³
1. Рекуррентное соотношение an = an – 1 + 2 вместе с условием a1 = 1 задает арифметическую прогрессию с первым членом 1 и разностью 2: 1, 3, 5, 7, … . Это последовательность нечетных чисел. 2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени. Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации. 3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .
Радиус цилиндра R=8., высота = 6 см.
Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³
ОТВЕТ: 384π см³
2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м
Угол между сторонами α= 60 град.
Используем формулу
S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м²
Высота призмы H = S/a = √3/2 м²
Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³
ОТВЕТ: 1 1/2 м³
2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени.
Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации.
3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .