У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14 ответ:14
Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B.
Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников.
Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д.
Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
ответ:14
Тело, которое получилось, имеет веретенообразную форму: два конуса с одним общим основанием,
радиусr которого - высота ВО треугольника АВС, проведенная к стороне АС, вокруг которой треугольник вращается;
образующие - АВ и ВС соответственно;
высота каждого конуса - СО и ОА, сумма которых равна АС.
Объем тела вращения равен сумме объемов конусов:
V=v₁ +v₂
v₁=Sh₁:3=πr²h₁:3
v₂=Sh₂:3=πr²h₁:3
V=πr²h₁:3+πr²h₁:3=S(h₁+h₂):3=πr²*АС:3
Радиус r основания, общего для обоих конусов, найдем из площади треугольника АВС, найденной по формуле Герона.
Вычисления банальны, приводить поэтому иx не буду.
Площадь треугольника АВС равна 84
r=ВО=2S ᐃ АВС:АС=168:21=8
V =πr²*АС:3=π*64*21:3=448π
Площадь поверхности равна сумме площадей боковой поверхности конусов:
Sт.вр.=πrL₁+πrL₂=πr(L₁+L₁)
Sт.вр.=π*8*(10+17)=216π