Найдите приближённо изменение функции z=y^4+4y√(x+3) при изменении x от −2 до −2,05 и изменении y от 2 до 2,01 (используйте приближенное равенство Δz≈dz)
Правильная призма – это прямая призма, основанием которой является правильный многоугольник. А прямой фигура является в том случае, если ее боковые грани перпендикулярны основаниям.
Формула площади правильной призмы
1. Общая формула
Площадь (S) полной поверхности призмы равна сумме площади ее боковой поверхности и двух площадей основания.
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности прямой призмы равняется произведению периметра ее основания на высоту.
Sбок. = Pосн. ⋅ h
Формула периметра и площади основания правильной призмы зависит от вида многогранника. Ниже мы рассмотрим самые популярные виды.
Пошаговое объяснение:
1) 43 дм³- 59 см³=42 941 см³=42,941 дм³
1 дм³= 1000 см³
43 дм³=43 000 см ³
43000см³-59 см³=42 941 см³=42,941 дм³
2) 74 м³- 145 дм³=73,855 м³
1 м³=1000 дм³
74 м³=74 000 дм³
74 000-145=73 855 дм³=73,855 м³
3) 50 см³ - 35 мм³=49,965 см³
1 см³=1000 мм³
50 см³=50 000 мм³
50 000-35=49 965 мм³= 49,965 см³
4) 10 см³ - 63 мм³=10 000 мм³-63 мм³=9937 мм³=9,037 см³
5) 1 м³- 4750 см³= 995 250 см³=0,99525 м³
1 м³= 1 000 000 см³
1 000 000 - 4750=995 250 см³
6) 69 см³-609 мм³=69000-609=68 391 мм³=68,391 см³
Пошаговое объяснение:
Правильная призма – это прямая призма, основанием которой является правильный многоугольник. А прямой фигура является в том случае, если ее боковые грани перпендикулярны основаниям.
Формула площади правильной призмы
1. Общая формула
Площадь (S) полной поверхности призмы равна сумме площади ее боковой поверхности и двух площадей основания.
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности прямой призмы равняется произведению периметра ее основания на высоту.
Sбок. = Pосн. ⋅ h
Формула периметра и площади основания правильной призмы зависит от вида многогранника. Ниже мы рассмотрим самые популярные виды.