Определение. любое натуральное число, на которое делится (без остатка) данное натуральное число, называется делителем данного числа. любое натуральное число, которое делится (без остатка) на данное натуральное число, называется кратным данному числу. всякое натуральное число кратно нескольким натуральным числам, самому себе и 1 или только самому себе и 1. например: число 64 кратно числам: 2, 4, 8, 16, 32, 64 и 1. следовательно, число 64 можно записать как произведение двух или более его множителей: 2 * 32 = 64 2 * 4 * 8 = 64 4 * 16 = 64 1 * 64 = 64 число 162 кратно числам: 2. 3, 6, 9, 18, 27, 54, 81, 162, 1. следовательно, число 162 можно записать как произведение двух или больше его множителей: 2 * 81 = 162 2 * 3 * 27 = 162 3 * 54 = 162 3 * 6 * 9 = 162 6 * 27 = 162 1 * 162 = 162 9 * 18 = 162 число 37 кратно числам 37 и 1. следовательно, число 37 можно записать как произведение только двух множителей: 37 * 1 = 37 число 0 (нуль) занимает особое место в разделе чисел. нет числа, которое делилось бы на нуль, так как множитель нуль в составе произведения превращает произведение в нуль. правило. нуль не относится к натуральным числам. на нуль делить нельзя.
обозначим стороны второго треугольника буквами а и в. тогда, согласно условию, будем иметь:
а*в = 70 (1)
(а+4)*(в-2) = 70 (2)
при попытке выразить величину а через в из (1) и дальнейшей её подстановке в (2) получим квадратное уравнение, которое пятиклассники ещё решать не умеют. поэтому будем действовать методм подбора или методом «проб и ошибок», тем более, что в данном случае это совсем не сложно.
разложим для начала число 70 на простые сомножители. 70 = 2*5*7. значит число 70 есть произведение — поскольку в нашем случае речь идет как раз о произведении – либо 2*35, либо 10*7, либо 14*5.
согласно условию один из сомножителей увеличили на 4, а второй уменьшили на 2. очевидно, что пара 35*2 этому условию не удовлетворяет. а вот две другие — (14*5 и 10*7) – как раз и являются решением . (10 + 4 = 14, 7 – 2 = 5)
обозначим стороны второго треугольника буквами а и в. тогда, согласно условию, будем иметь:
а*в = 70 (1)
(а+4)*(в-2) = 70 (2)
при попытке выразить величину а через в из (1) и дальнейшей её подстановке в (2) получим квадратное уравнение, которое пятиклассники ещё решать не умеют. поэтому будем действовать методм подбора или методом «проб и ошибок», тем более, что в данном случае это совсем не сложно.
разложим для начала число 70 на простые сомножители. 70 = 2*5*7. значит число 70 есть произведение — поскольку в нашем случае речь идет как раз о произведении – либо 2*35, либо 10*7, либо 14*5.
согласно условию один из сомножителей увеличили на 4, а второй уменьшили на 2. очевидно, что пара 35*2 этому условию не удовлетворяет. а вот две другие — (14*5 и 10*7) – как раз и являются решением . (10 + 4 = 14, 7 – 2 = 5)