Решение, при целых значениях x и y, числа х+3 и х+4 будут двумя целыми последовательными числами, а значит одно из них будет четным, т.е. будет делиться нацело на 2, а значит и произведение (х+3)(х+4) будет делиться нацело на 2.
8y - четное для любого целого значения y (как произведение чисел одно из которых (а исенно 8) четное)
8y+5 - нечетное число (как сумма четного числа 8y и нечетного числа 5)
при целых значениях переменных x и y левая часть уравнения четное число, а правая нечетное.
Следовательно данное уравнение не имеет решения в целых числах. Доказано
Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49
Решение, при целых значениях x и y, числа х+3 и х+4 будут двумя целыми последовательными числами, а значит одно из них будет четным, т.е. будет делиться нацело на 2, а значит и произведение (х+3)(х+4) будет делиться нацело на 2.
8y - четное для любого целого значения y (как произведение чисел одно из которых (а исенно 8) четное)
8y+5 - нечетное число (как сумма четного числа 8y и нечетного числа 5)
при целых значениях переменных x и y левая часть уравнения четное число, а правая нечетное.
Следовательно данное уравнение не имеет решения в целых числах. Доказано
Пошаговое объяснение: