ответ здесь не такой будет. Пусть n>1. Рассмотрим несвязный граф, в котором одна вершина ни с чем не соединена, а остальные соединены попарно. Тогда в графе (n−1)(n−2)/2 рёбер, и он не связен. Если количество рёбер увеличить на единицу, то их получится (n−1)(n−2)/2+1, и здесь уже связность графа гарантирована. Действительно, если компонент связности как минимум две, и одна из них содержит k вершин, где 1<k<n, то количество отсутствующих рёбер не меньше k(n−k). Эта величина не меньше n−1 ввиду неравенства kn−k2−n+1=(k−1)(n−(k+1))≥0, а у нас отсутствует меньше рёбер.
А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
ответ здесь не такой будет. Пусть n>1. Рассмотрим несвязный граф, в котором одна вершина ни с чем не соединена, а остальные соединены попарно. Тогда в графе (n−1)(n−2)/2 рёбер, и он не связен. Если количество рёбер увеличить на единицу, то их получится (n−1)(n−2)/2+1, и здесь уже связность графа гарантирована. Действительно, если компонент связности как минимум две, и одна из них содержит k вершин, где 1<k<n, то количество отсутствующих рёбер не меньше k(n−k). Эта величина не меньше n−1 ввиду неравенства kn−k2−n+1=(k−1)(n−(k+1))≥0, а у нас отсутствует меньше рёбер.
Пошаговое объяснение:
Надеюсь
Обратное
Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема
Противоположное
Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема.
Обратное противоположному
Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема
Обратное
Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема.
Противоположное
Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема.
Противоположное обратному
Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.