Y=11x+ln =11x+11 ln(x+15) Для нахождения наименьшего значения функции находим первую производную данной функции y ' =(11x +ln) ' =11+ 11 = = Решаем уравнение (находим критические точки) y '=0 11x+154=0 ⇒ 11x = - 154 ⇒ x= - 154/11 = -14 При x < -14 производная функции отрицательна (функция убывает), при x > -14 производная функции положительна (функция возрастает), значит в критической точке x = -14 функция принимает минимум, найдем это значение y(-14) =11*(-14) - 11ln(-14+15) = -154 -11*ln 1 = -154 -11*0= -154 ответ: -154
Для нахождения наименьшего значения функции находим первую производную данной функции
y ' =(11x +ln) ' =11+ 11 = =
Решаем уравнение (находим критические точки)
y '=0
11x+154=0 ⇒ 11x = - 154 ⇒ x= - 154/11 = -14
При x < -14 производная функции отрицательна (функция убывает), при x > -14 производная функции положительна (функция возрастает), значит в критической точке x = -14 функция принимает минимум, найдем это значение
y(-14) =11*(-14) - 11ln(-14+15) = -154 -11*ln 1 = -154 -11*0= -154
ответ: -154