Найдите косинус угла С треугольника АВС , если
А (0,1,-1) , В (1,-1,2) , С (3,1,0)
Вариант II.
1 Даны точки А (3,2,1), В (1,2,3) и вектор CD (1,1,1).
Найдите:
а) координаты вектора АВ;
б) абсолютную величину вектора CD ;
в) координаты разности векторов АВ и CD ;
2 Найдите длину вектора 2 ⃗ + 3 ⃗ , если
координаты векторов ⃗ (1,1,-1) , ⃗ (2,0,0);
3 Найдите косинус угла В треугольника АВС , если
А (2,2,-4), В (2,-1,-1) , С (3,-1,-2)
Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.
Пошаговое объяснение:
ДАНО: ПИРАМИДА
ΔАВС- прямоугольный
АВ=15, ВС=15√3
∠a =arctg(2√3)/225
НАЙТИ: Vпирамиды
V= 1/3 Sосн*h
1) ΔABC прямоугольный AB, BC катеты, Sосн=1/2*AB*BC
2) Высота пирамиды "h", опущенная из вершины D, в точку "0", причем "0" является точкой центром описанной окружности ΔАВС, то есть, точкой пересечения срединных перпендикуляров, проведенных к сторонам ΔАВС.(в часном случае ΔАВС прямоугольный, и "О" лежит на гипотенузе АС )
Δ ΔОЕВ - прямоугольный , с катетами "ОЕ" "ОМ" и дпины их равны половине соответствующих катетов ΔАВС OB²=OE²+OM²=1/4(AB²+BC²)
Из ΔDBO Прямоугольный, известен катет и прилежащий угол,
∠a нам дан. tg∠a= OE/OB OE=OB/tg∠a
рабочая формула будет иметь вид
V=1/3 *1/2*AB*BC* h
как то так
калькулятор в