Обозначим высоту каждой части х, высота большого конуса 3х Пусть радиус меньшего круга r, тогда из подобия прямоугольных треугольников: радиус среднего круга 2r, радиус основания 3r.
Тогда V₁( малого конуса)=(1/3)·πr²x; V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x; V₃(всего конуса, большого конуса)=(1/3)·π(3r)²·3x=(27/3)·πr²x; По условию V₃- V₂=38 или (27/3)·πr²x -(8/3)·πr²x=38 ⇒πr²x=6
Поскольку оба брата попали на станцию одновременно , воспользоваться велосипедом они могли только следующим образом. Первый брат проехал первую половину пути на велосипеде, после чего слез с него и оставил его на дороге. Когда до велосипеда добрался второй брат, он сел на него и проехал оставшуюся половину пути на нём.
Пусть братья начали движение на минут до отхода поезда. Пусть также в километрах в минуту — скорость движения пешком. Тогда скорость движения на велосипеде равна километров в минуту. Тогда из условия задачи следует следующая система уравнений:
Итак, братья вышли за 50 минут до отправления поезда.
2. Решите двойное неравенство:
Заметим, что левая часть неравенство выполняется при любых из ОДЗ. Следовательно, решать надо только правую часть неравенства:
3. При каком наибольшем значении система уравнений не имеет решение?
И первого уравнения выражаем , подставляем это во второе уравнение, после чего получаем:
Последнее уравнение не имеет решений относительно при и . Наибольшее из этих значений .
4. Пусть — несократимая дробь, где и — натуральные числа. На какое натуральное число можно сократить дробь , если известно, что она сократима?
Поскольку дробь сократима, то имеет место система:
где — целое число, причём , а и не имеют общих делителей. Решаем данную систему относительно и . В результате получаем:
Поскольку дробь несократима, то натуральные числа и не имеют общих делителей. Это значит, что для остаётся только один вариант — быть равным 11.
Пусть радиус меньшего круга r, тогда из подобия прямоугольных треугольников:
радиус среднего круга 2r, радиус основания 3r.
Тогда V₁( малого конуса)=(1/3)·πr²x;
V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x;
V₃(всего конуса, большого конуса)=(1/3)·π(3r)²·3x=(27/3)·πr²x;
По условию
V₃- V₂=38
или
(27/3)·πr²x -(8/3)·πr²x=38 ⇒πr²x=6
Значит
V₁( малого конуса)=(1/3)·πr²x=(1/3)·6=2;
V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x=(8/3)·6=16
V( средней части)=V₂-V₁=16-2=14.
О т в е т. 14
Поскольку оба брата попали на станцию одновременно , воспользоваться велосипедом они могли только следующим образом. Первый брат проехал первую половину пути на велосипеде, после чего слез с него и оставил его на дороге. Когда до велосипеда добрался второй брат, он сел на него и проехал оставшуюся половину пути на нём.
Пусть братья начали движение на минут до отхода поезда. Пусть также в километрах в минуту — скорость движения пешком. Тогда скорость движения на велосипеде равна километров в минуту. Тогда из условия задачи следует следующая система уравнений:
Итак, братья вышли за 50 минут до отправления поезда.
2. Решите двойное неравенство:Заметим, что левая часть неравенство выполняется при любых из ОДЗ. Следовательно, решать надо только правую часть неравенства:
И первого уравнения выражаем , подставляем это во второе уравнение, после чего получаем:
Последнее уравнение не имеет решений относительно при и . Наибольшее из этих значений .
4. Пусть — несократимая дробь, где и — натуральные числа. На какое натуральное число можно сократить дробь , если известно, что она сократима?Поскольку дробь сократима, то имеет место система:
где — целое число, причём , а и не имеют общих делителей. Решаем данную систему относительно и . В результате получаем:
Поскольку дробь несократима, то натуральные числа и не имеют общих делителей. Это значит, что для остаётся только один вариант — быть равным 11.