Сел. поселение - один или несколько объединенных общей территорией сел. населенных пунктов ( поселков, сел, станиц, деревень, хуторов, аулов и др. сел. населенных пунктов) , в которых местное самоуправление осуществляется населением непосредственно и (или) через выборные или иные органы мсу Городское поселение - город или поселок, в которых мсу осуществляется населением непосредственно и (или) через выборные или иные органы мсу ( Из ФЗ №131" Об Общих принципах организации местного самоуправления в РФ)
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Городское поселение - город или поселок, в которых мсу осуществляется населением непосредственно и (или) через выборные или иные органы мсу
( Из ФЗ №131" Об Общих принципах организации местного самоуправления в РФ)
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал