Школьники собрали всего 2100 кг картофеля, причем до обеда было собрано в 2 раза больше, чем после обеда. Сколько килограммов картофеля собрали школьники после обеда?
В условие задачи входят величины: масса картофеля, собранного до обеда, масса картофеля, собранного после обеда, общая масса собранного картофеля.
Масса картофеля, собранного после обеда, меньше. Ее и принимают за х. Тогда масса картофеля, собранного до обеда, равна 2х кг.
2100 – сумма величин, так как в первой фразе говорится, что всего собрали 2100 кг. Задача на суммирование, составляется уравнение: 2х + х = 2100. Упростив, получим: 3х = 2100, где х = 700. Так как через х обозначили массу, собранную после обеда, то мы ответили на поставленный в задаче вопрос.
y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
Школьники собрали всего 2100 кг картофеля, причем до обеда было собрано в 2 раза больше, чем после обеда. Сколько килограммов картофеля собрали школьники после обеда?
В условие задачи входят величины: масса картофеля, собранного до обеда, масса картофеля, собранного после обеда, общая масса собранного картофеля.
Масса картофеля, собранного после обеда, меньше. Ее и принимают за х. Тогда масса картофеля, собранного до обеда, равна 2х кг.
2100 – сумма величин, так как в первой фразе говорится, что всего собрали 2100 кг. Задача на суммирование, составляется уравнение: 2х + х = 2100. Упростив, получим: 3х = 2100, где х = 700. Так как через х обозначили массу, собранную после обеда, то мы ответили на поставленный в задаче вопрос.
ответ: 700 кг картофеля собрали после обеда.
y=(x+2)^2+4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Пошаговое объяснение: