Наурыз мерекесінде қолөнер шеберлерінің көрмесі ұйымдастырылды.Көрмедегі бұйымдардың 50-і киізден ,одан 2есе артық бұйым ағаштан жасалған бұйымдардың бестен бір бөлігін құрайды.Неше бұйым былғарыдан жасалған
Это отрывок из неё "Как-то вечером дети рассматривали рисунки созвездия Большой Медведицы. —А Полярная звезда где? — вдруг спросил Алька. — На носу или на хвосте Большой Медведицы? Света не знала, как ответить. Пришлось идти к Папе и спрашивать, где у Большой Медведицы находится Полярная звезда. А Папа сказал: —Нигде. —Как это нигде? — не поверили дети. —Я вам рассказал про одно-единственное созвездие, про Большую Медведицу, а ведь на небе много созвездий. Вот и Полярная звезда находится в другом созвездии — Малая Медведица. —А ты нам покажешь Малую Медведицу? — спросил Алька. —Покажу, но найти её на небе нелегко, потому что в этом созвездии очень мало ярких звёзд. —А ковш в Малой Медведице тоже есть? — спросил Алька. —Да, — подтвердил Папа. — Но только малый ковш. И как раз на конце ручки этого малого ковша находится Полярная звезда. Папа нарисовал на бумаге большой ковш, потом Полярную звезду, а затем и малый ковш. В малом ковше четыре звезды он изобразил совсем неяркими, а три, в том числе и Полярную звезду, поярче. В один из вечеров, когда небо было темное и безоблачное, а звезды яркие, Папа показал детям созвездие Малой Медведицы. —В старину, — сказал Папа, — казахи называли Полярную звезду колом, а остальные звезды малого ковша — овцами, которые всю ночь бродят на привязи вокруг кола. А индейцы Южной Америки говорили, что Малая Медведица — это обезьянка, которая уцепилась хвостом за Полярную звезду и вращается вокруг нее. —Папа, это все сказки про Малую Медведицу? — поинтересовался Алька. —Конечно, — ответил Папа. — Есть ещё много других сказок. Например, в одной из них говорится, что в Большую Медведицу могущественная и злая волшебница превратила красивую девушку по имени Каллисто. —А Малая Медведица — это тоже кто-то заколдованный? — спросил Алик. Созвездие Малой —Да, — сказал Папа. — В Малую Медведицу злюка превратила служанку Каллисто. С тех пор служанка всё время сопровождает свою госпожу. Поэтому на небе Малая Медведица всегда находится рядом с Большой Медведицей. "
Мощность каждого из этих двух множеств равна 4, так как в каждом из них ровно 4 элемента:
В пересечение множеств попадают элементы, которые содержатся в каждом из пересекаемых множеств. В данном случае таких нет. Значит пересечение - множество пустое и его мощность равна нулю:
В объединение множеств попадают элементы, которые содержатся хотя бы в одном из объединяемых множеств. Объединение имеет вид:
Так как в объединении содержится 8 элементов, то его мощность равна 8:
Симметрическая разность представляет собой множество элементов, которые содержались только в одном из исходных множеств. Так как иных элементов не было (пересечение - пустое множество), то в данном случае симметрическая разность совпадет с объединением и ее мощность равна 8:
Декартово произведение представляет собой множество упорядоченных пар , где , . Мощность декартова произведения равна произведению мощностей перемножаемых множеств.
Элементом а может оказаться любой из 4 элементов множества А, аналогично, элементом b может оказаться любой из 4 элементов множества В. Тогда, общее число пар равно 16, следовательно, мощность декартова произведения равна 16.
"Как-то вечером дети рассматривали рисунки созвездия Большой Медведицы.
—А Полярная звезда где? — вдруг спросил Алька. — На носу или на хвосте Большой Медведицы?
Света не знала, как ответить. Пришлось идти к Папе и спрашивать, где у Большой Медведицы находится Полярная звезда. А Папа сказал:
—Нигде.
—Как это нигде? — не поверили дети.
—Я вам рассказал про одно-единственное созвездие, про Большую Медведицу, а ведь на небе много созвездий. Вот и Полярная звезда находится в другом созвездии — Малая Медведица.
—А ты нам покажешь Малую Медведицу? — спросил Алька.
—Покажу, но найти её на небе нелегко, потому что в этом созвездии очень мало ярких звёзд.
—А ковш в Малой Медведице тоже есть? — спросил Алька.
—Да, — подтвердил Папа. — Но только малый ковш. И как раз на конце ручки этого малого ковша находится Полярная звезда.
Папа нарисовал на бумаге большой ковш, потом Полярную звезду, а затем и малый ковш. В малом ковше четыре звезды он изобразил совсем неяркими, а три, в том числе и Полярную звезду, поярче.
В один из вечеров, когда небо было темное и безоблачное, а звезды яркие, Папа показал детям созвездие Малой Медведицы.
—В старину, — сказал Папа, — казахи называли Полярную звезду колом, а остальные звезды малого ковша — овцами, которые всю ночь бродят на привязи вокруг кола. А индейцы Южной Америки говорили, что Малая Медведица — это обезьянка, которая уцепилась хвостом за Полярную звезду и вращается вокруг нее.
—Папа, это все сказки про Малую Медведицу? — поинтересовался Алька.
—Конечно, — ответил Папа. — Есть ещё много других сказок. Например, в одной из них говорится, что в Большую Медведицу могущественная и злая волшебница превратила красивую девушку по имени Каллисто.
—А Малая Медведица — это тоже кто-то заколдованный? — спросил Алик. Созвездие Малой
—Да, — сказал Папа. — В Малую Медведицу злюка превратила служанку Каллисто. С тех пор служанка всё время сопровождает свою госпожу. Поэтому на небе Малая Медведица всегда находится рядом с Большой Медведицей. "
Мощность каждого из этих двух множеств равна 4, так как в каждом из них ровно 4 элемента:
В пересечение множеств попадают элементы, которые содержатся в каждом из пересекаемых множеств. В данном случае таких нет. Значит пересечение - множество пустое и его мощность равна нулю:
В объединение множеств попадают элементы, которые содержатся хотя бы в одном из объединяемых множеств. Объединение имеет вид:
Так как в объединении содержится 8 элементов, то его мощность равна 8:
Симметрическая разность представляет собой множество элементов, которые содержались только в одном из исходных множеств. Так как иных элементов не было (пересечение - пустое множество), то в данном случае симметрическая разность совпадет с объединением и ее мощность равна 8:
Декартово произведение представляет собой множество упорядоченных пар , где , . Мощность декартова произведения равна произведению мощностей перемножаемых множеств.
Элементом а может оказаться любой из 4 элементов множества А, аналогично, элементом b может оказаться любой из 4 элементов множества В. Тогда, общее число пар равно 16, следовательно, мощность декартова произведения равна 16.