В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
fgrtyrrrrty
fgrtyrrrrty
29.05.2023 15:53 •  Математика

Написать газету в день математического числа P !Баню за всё кроме нормальной газеты!
газета должна быть розмером от 15 до 30 строк желательно примерно 24 . Желательно что б было видно что писал ученик 6го класса !ГАЗЕТА ДОЛЖНА БЫТЬ НА УКРАИНСКОМ ЯЗЫКЕ!​

Показать ответ
Ответ:
nOMOshHuK2
nOMOshHuK2
04.04.2021 14:50

Число {\displaystyle \pi }\pi  иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi  была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi  и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.

{\displaystyle \pi }\pi  — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi  была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi  положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.

В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi  и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.

{\displaystyle \pi }\pi  является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi  к кольцу периодов.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота