V₀ - скорость течения весной v + v₀ - скорость баржи по течению весной v - v₀ - скорость баржи против течения весной v + v₀ - 1 - скорость баржи по течению летом v - v₀ + 1 - скорость баржи против течения летом
ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
v + v₀ - скорость баржи по течению весной
v - v₀ - скорость баржи против течения весной
v + v₀ - 1 - скорость баржи по течению летом
v - v₀ + 1 - скорость баржи против течения летом
Тогда: { v + v₀ = 5(v - v₀)
{ v + v₀ - 1 = 3(v - v₀ + 1)
{ v =1,5v₀
{ 1,5v₀ + v₀ - 1 = 4,5v₀ - 3v₀ + 3
2,5v₀ - 1,5v₀ = 4
v₀ = 4 (км/ч) - скорость течения весной
v + 4 - 1 = 3(v - 4 + 1)
v + 3 = 3v - 9
12 = 2v
v = 6 (км/ч) - скорость баржи
ответ: скорость течения весной - 4 км/ч.
ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение: