6 1/4^ * 8-32/3^ * 51/2+22/5^ * 47/12=18; 5/6 1) 61/4^ * 8=25/4^ * 8=50; 2)32/3^ * 51/2=11/3^ * 11/2=121/6=201/6; 3) 2 2/5 ^ * 4 7/12=12/5 ^ * 55/12=11 4) 50 - 201/6 = 496/6 - 201/6 = 295/6; 5)295/6-11=185/6; 2 1/2^ * 48-3 2/3:1/18+5 5/12:7/36=81; 6/7 1) 21/2^ * 48=5/2^ * 48=120; 2)32/3:1/18=11/3^ * 18/1=66; 3)55/12:7/36=65/12^ * 36/7=195/7=27; 6/7 4) 120 - 66 = 54 5) 54+27 6/7=816/7 13 1/2:11/3+16 1/2^ * 15/11+19 1/4:4/25= 154 7/16 1) 13 1/2:11/3=27/2:4/3=27/2^ * 3/4=; 81/8=10 1/8 2) 16 1/2^ * 15/11=33/2^ * 16/11=24 3) 19 1/4:4/25=77/4^ * 25/4=1925/16=; 120 5/16; 4)101/8+24=341/8 5) 341/8+1205/16=342/16+120 5/16=; 547/16
а) Отложим эти вектора от точки А. Тогда получится
АА1, АА2, ААЗ , но эти вектора, очевидно, лежат в
одной плоскости. Поэтому AA1, CC1, ВВ1 компланарные
вектора (рис. 213).
б) Эти векторы уже отложены от одной точки А.
Векторы AB и AD лежат в плоскости ABCD, а вектор
AA1 не лежит в этой плоскости. Поэтому AA1, AB, AD
не компланарны. В) Отложим эти векторы от точки
А. Тогда получатся векторы A1A2, AC, AA2, где А2
симметричная точка к A1 относительно точки А.
Очевидно, что данные три вектора лежат в плоскости
AA1C1C. Поэтому и исходные вектора компланарны. Г)
Отложив эти вектора от точки А получим вектора AD,
AA1, AB, которые не компланарны (см. п. б). Поэтому и
вектора AD, CC1, А1В1 не компланарны.
Пошаговое объяснение:
лайк нажми и лутший ответ
6 1/4^ * 8-32/3^ * 51/2+22/5^ * 47/12=18; 5/6 1) 61/4^ * 8=25/4^ * 8=50; 2)32/3^ * 51/2=11/3^ * 11/2=121/6=201/6; 3) 2 2/5 ^ * 4 7/12=12/5 ^ * 55/12=11 4) 50 - 201/6 = 496/6 - 201/6 = 295/6; 5)295/6-11=185/6; 2 1/2^ * 48-3 2/3:1/18+5 5/12:7/36=81; 6/7 1) 21/2^ * 48=5/2^ * 48=120; 2)32/3:1/18=11/3^ * 18/1=66; 3)55/12:7/36=65/12^ * 36/7=195/7=27; 6/7 4) 120 - 66 = 54 5) 54+27 6/7=816/7 13 1/2:11/3+16 1/2^ * 15/11+19 1/4:4/25= 154 7/16 1) 13 1/2:11/3=27/2:4/3=27/2^ * 3/4=; 81/8=10 1/8 2) 16 1/2^ * 15/11=33/2^ * 16/11=24 3) 19 1/4:4/25=77/4^ * 25/4=1925/16=; 120 5/16; 4)101/8+24=341/8 5) 341/8+1205/16=342/16+120 5/16=; 547/16
а) Отложим эти вектора от точки А. Тогда получится
АА1, АА2, ААЗ , но эти вектора, очевидно, лежат в
одной плоскости. Поэтому AA1, CC1, ВВ1 компланарные
вектора (рис. 213).
б) Эти векторы уже отложены от одной точки А.
Векторы AB и AD лежат в плоскости ABCD, а вектор
AA1 не лежит в этой плоскости. Поэтому AA1, AB, AD
не компланарны. В) Отложим эти векторы от точки
А. Тогда получатся векторы A1A2, AC, AA2, где А2
симметричная точка к A1 относительно точки А.
Очевидно, что данные три вектора лежат в плоскости
AA1C1C. Поэтому и исходные вектора компланарны. Г)
Отложив эти вектора от точки А получим вектора AD,
AA1, AB, которые не компланарны (см. п. б). Поэтому и
вектора AD, CC1, А1В1 не компланарны.
Пошаговое объяснение:
лайк нажми и лутший ответ