Начально e значение величины Конечное значение величины Изменени Изменени е величины величины B процента 15 м 18 м 3 м % 16 кг 32 кг Kr % 34 и 51 Ц Ц % 45 мин 27 мин МИН % 40 кг 29 кг T T
Аня и Боря любят играть в разноцветные кубики, причем у каждого из них свой набор и в каждом наборе все кубики различны по цвету. Однажды дети заинтересовались, сколько существуют цветов таких, что кубики каждого цвета присутствуют в обоих наборах. Для этого они занумеровали все цвета случайными числами от 0 до 108. На этом их энтузиазм иссяк, поэтому вам предлагается им в оставшейся части.
В первой строке входных данных записаны числа N и M — число кубиков у Ани и Бори. В следующих N строках заданы номера цветов кубиков Ани. В последних M строках номера цветов Бори.
Найдите три множества: номера цветов кубиков, которые есть в обоих наборах; номера цветов кубиков, которые есть только у Ани и номера цветов кубиков, которые есть только у Бори. Для каждого из множеств выведите сначала количество элементов в нем, а затем сами элементы, отсортированные по возрастанию.
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.
Аня и Боря любят играть в разноцветные кубики, причем у каждого из них свой набор и в каждом наборе все кубики различны по цвету. Однажды дети заинтересовались, сколько существуют цветов таких, что кубики каждого цвета присутствуют в обоих наборах. Для этого они занумеровали все цвета случайными числами от 0 до 108. На этом их энтузиазм иссяк, поэтому вам предлагается им в оставшейся части.
В первой строке входных данных записаны числа N и M — число кубиков у Ани и Бори. В следующих N строках заданы номера цветов кубиков Ани. В последних M строках номера цветов Бори.
Найдите три множества: номера цветов кубиков, которые есть в обоих наборах; номера цветов кубиков, которые есть только у Ани и номера цветов кубиков, которые есть только у Бори. Для каждого из множеств выведите сначала количество элементов в нем, а затем сами элементы, отсортированные по возрастанию.