В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ника1234551
ника1234551
14.09.2020 21:31 •  Математика

На рисунке ниже ABCD представляет собой квадрат площадью 2020 См?. Соединили середины каждой стороны квадрата ABCD, чтобы
получить квадрат EFGH, а затем соединили середины каждой стороны
квадрата EFGH, чтобы получить квадрат MNPQ. Какова площадь
закрашенной части в см??
A
E
B
M
H
F
Р
У
С
(А) 400
(В) 404 (С) 450
(D) 500
(Е) 505

Показать ответ
Ответ:
sadko77777
sadko77777
29.01.2021 05:26
Алгоритм таков:
1. Длина окружности L(окр) = 2*pi*R(окр) , длина сектора L(сект) = R(окр) *alpha.
Т. о. , периметр воронки L(вор) = L(окр) - L(сект)

2. R(воронки) = L(вор) /(2*pi)
высота воронки H(вор) = sqrt( R(окр) ^2 - R(воронки) ^2);

3. Имея функции R(вор) от alpha и H(вор) от alpha, имеем функцию для объема
V(вор) = pi*R(вор) ^2*H(вор) /3
Это функция от параметра alpha, берем производную, приравниваем к нулю, находя экстремум. Этот экстремум будет максимумом функции (минимумы - при alpha = 0 и alpha = 2*pi)
прости решать некогда
0,0(0 оценок)
Ответ:
лиза1585
лиза1585
19.03.2023 08:33

Как доказать, что четырехугольник — параллелограмм? Для этого можно использовать определение либо один из признаков параллелограмма.

1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.

ABCD — параллелограмм, если

AB ∥ CD, AD ∥ BC.

Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.

это могут быть пары треугольников

1) ABC и CDA,

2) BCD и DAB,

3) AOD и COB,

4) AOB и COD.

2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.

3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).

Для этого можно доказать равенство одной из тех же пар треугольников.

4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.

Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.

Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.

Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.

Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота