На острове авалон живут рыцари, хитрецы и лжецы. рыцари всегда говорят правду, лжецы всегда обманывают, а хитрецы на вопросы, заданные по очереди, то говорят правду, то обманывают, обязательно чередуя (ответ хитреца на первый вопрос может быть как правдой, так и ложью, а далее он чередует правдивые и лживые ответы). каждому жителю острова авалон было последовательно задано три вопроса: «ты рыцарь? », «ты лжец? », «ты хитрец? ». от всех жителей были получены ответы «да» или «нет». на первый вопрос ответили «да» ровно 100 жителей, на второй вопрос — ровно 25 жителей, а на третий вопрос — ровно 55 жителей.
какое наибольшее количество рыцарей может быть на острове авалон?
70
Пошаговое объяснение:
Пусть рыцарей Р, лжецов Л, хитрецов, ответивших на первый вопрос правдой, Х1, хитрецов, совравших при ответе на первый вопрос, Х2.
Р ответили: да - нет - нет
Л ответили: да - нет - да
Х1 ответили: нет - да - да
Х2 ответили: да - нет - нет
Сравниваем это с условием:
Р + Л + Х2 = 100
Х1 = 25
Л + Х1 = 55
Второе уравнение сразу дает значение Х1, из третьего Л = 55 - Х1 = 30. Тогда первое уравнение можно переписать в виде Р + 30 + Х2 = 100, Р + Х2 = 70.
Р будет больше, если Х2 будет меньше. Наименьшее возможное Х2 = 0, при этом Р = 70.