Каждое натуральное число {\displaystyle n>1}n>1 можно представить в виде {\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}{\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}, где {\displaystyle p_{1},\ldots ,p_{k}}{\displaystyle p_{1},\ldots ,p_{k}} — простые числа, причём такое представление единственно, если не учитывать порядок следования множителей.
Если формально условиться, что произведение пустого множества чисел равно 1, то условие {\displaystyle n>1}n>1 в формулировке можно опустить, тогда для единицы подразумевается разложение на пустое множество простых: {\displaystyle 1=1}{\displaystyle 1=1}[3][4].
Как следствие, каждое натуральное число {\displaystyle n}n единственным образом представимо в виде
{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},}{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},} где {\displaystyle p_{1}<p_{2}<\ldots <p_{k}}{\displaystyle p_{1}<p_{2}<\ldots <p_{k}} — простые числа, и {\displaystyle d_{1},\ldots ,d_{k}}{\displaystyle d_{1},\ldots ,d_{k}} — некоторые натуральные числа.
Такое представление числа {\displaystyle n}n называется его каноническим разложением на простые сомножители.
Скорость поезда вышедшего со станции Мойынты, 77,25 км/ч Скорость поезда вышедшего со станции Шу, на 3 целых 1/2 км/ч меньше, значит 77,25-3,5 = 73,75км/ч
Оба они за 1 ч пройдут расстояние равному 77,25+73,75=151 км
Отсюда вывод: за 3 ч они пройдут расстояние 151*3=453 км
расстояние между станциями Мойынты и Шу: 453 км
Берем за x - расстояние между двумя станциями в километрах тогда они оба расстояние равное x/3 км
Тогда уравнение будет выглядит следующим образом: (77, 25 + (77, 25-3,5))*3 = x Решаем уравнение: (77,25 + 73,75) * 3 = х 77,25 + 73, 75 = х/3 151 = х/3 х=151*3=453
Основная теорема арифметики утверждает[1][2]:
Каждое натуральное число {\displaystyle n>1}n>1 можно представить в виде {\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}{\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}, где {\displaystyle p_{1},\ldots ,p_{k}}{\displaystyle p_{1},\ldots ,p_{k}} — простые числа, причём такое представление единственно, если не учитывать порядок следования множителей.
Если формально условиться, что произведение пустого множества чисел равно 1, то условие {\displaystyle n>1}n>1 в формулировке можно опустить, тогда для единицы подразумевается разложение на пустое множество простых: {\displaystyle 1=1}{\displaystyle 1=1}[3][4].
Как следствие, каждое натуральное число {\displaystyle n}n единственным образом представимо в виде
{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},}{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},} где {\displaystyle p_{1}<p_{2}<\ldots <p_{k}}{\displaystyle p_{1}<p_{2}<\ldots <p_{k}} — простые числа, и {\displaystyle d_{1},\ldots ,d_{k}}{\displaystyle d_{1},\ldots ,d_{k}} — некоторые натуральные числа.
Такое представление числа {\displaystyle n}n называется его каноническим разложением на простые сомножители.
Пошаговое объяснение:
Скорость поезда вышедшего со станции Шу, на 3 целых 1/2 км/ч меньше, значит 77,25-3,5 = 73,75км/ч
Оба они за 1 ч пройдут расстояние равному 77,25+73,75=151 км
Отсюда вывод: за 3 ч они пройдут расстояние 151*3=453 км
расстояние между станциями Мойынты и Шу: 453 км
Берем за x - расстояние между двумя станциями в километрах
тогда они оба расстояние равное x/3 км
Тогда уравнение будет выглядит следующим образом:
(77, 25 + (77, 25-3,5))*3 = x
Решаем уравнение:
(77,25 + 73,75) * 3 = х
77,25 + 73, 75 = х/3
151 = х/3
х=151*3=453
ответ:453 км