Для нахождения скоростей течения реки и рассматриваемого теплохода будем использовать формулы: Vтеч = 0,5 * (V1 - V2) = 0,5 * (S1 / t1 - S2 / t2) / 2 и Vтепл = 0,5 * (V1 + V2) = 0,5 * (S1 / t1 + S2 / t2) / 2.
Значения переменных: S1 — путь по течению (S1 = 40 км); t1 — продолжительность движения по течению (t1 = 2 ч); S2 — путь против течения (S2 = 45 км); t2 — продолжительность движения против течения (t2 = 3 ч).
Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
Для нахождения скоростей течения реки и рассматриваемого теплохода будем использовать формулы: Vтеч = 0,5 * (V1 - V2) = 0,5 * (S1 / t1 - S2 / t2) / 2 и Vтепл = 0,5 * (V1 + V2) = 0,5 * (S1 / t1 + S2 / t2) / 2.
Значения переменных: S1 — путь по течению (S1 = 40 км); t1 — продолжительность движения по течению (t1 = 2 ч); S2 — путь против течения (S2 = 45 км); t2 — продолжительность движения против течения (t2 = 3 ч).
Расчет: а) Скорость течения: Vтеч = 0,5 * (40 / 2 - 45 / 3) = 2,5 км/ч;
б) Скорость теплохода: Vтепл = 0,5 * (40 / 2 + 45 / 3) = 17,5 км/ч.
ответ: Скорость течения составляет 2,5 км/ч; скорость теплохода — 17,5 км/ч.
Пошаговое объяснение:
1000x+100y+10z+t-1000t-100z-10y-x=909
999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем
111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1
x=t+1, z=y+1
По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число
t+1+y+y+1+t=9n
2(t+y+1)=9n, значит n=2, t+y=8
Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t
8 1 2 7
7 2 3 6
6 3 4 5
5 4 5 4
4 5 6 3
3 6 7 2
2 7 8 1
9 0 1 8
Итого 8 чисел удовлетворяют условию задачи